Algebra 2 Guideline for Week 2 April, 27 – May, 1

There are 5 Review assignments to complete this week. You can write on binder paper. Make sure to

- write very neat
- show all the work
- write your name and period in pen

After you are done with each assignment take a photo and email me your assignments altogether. The first two weeks of assignments are all due on May 8th.

April,27

Assignment HMH 5.1 Practice A/B "Graphing Cubic Functions"

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 5.1
- HMH 5.1 Reteach page (attached)

April,28

Assignment HMH 5.2 Practice A/B "Graphing Polynomials, Odd and Even, Leading coefficients and x-intercepts"

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 5.2
- HMH 5.2 Reteach page (attached)

April,29

Assignment HMH 6.1 Practice A/B "Adding and Subtracting Polynomials"

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 6.1
- HMH 6.1 Reteach page (attached)

April,30

Assignment HMH 6.2 Practice A/B "Multiplying Polynomials"

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 6.2
- HMH 6.2 Reteach page (attached)

May,1

Assignment HMH 6.4 Practice A/B "Factoring Polynomials"

Use the following resources to review:

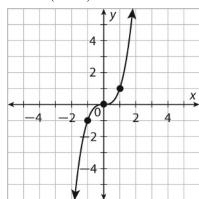
- Notes from our class
- On-line HMH interactive lesson 6.4
- HMH 6.4 Reteach page (attached)

Graphing Cubic Functions

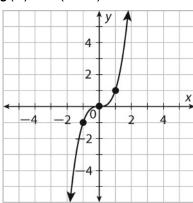
Practice and Problem Solving: A/B

Calculate the reference points for each transformation of the parent function $f(x) = x^3$. Then graph the transformation. (The graph of the parent function is shown.)

1.
$$g(x) = (x-3)^3 + 2$$

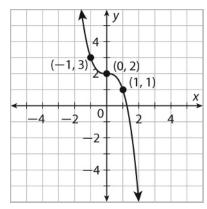


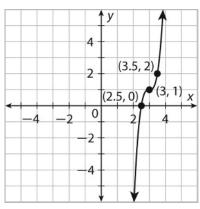
2.
$$g(x) = -3(x+2)^3 - 2$$



Write the equation of the cubic function whose graph is shown.

3.





Solve.

- 5. The graph of $f(x) = x^3$ is reflected across the x-axis. The graph is then translated 11 units up and 7 units to the left. Write the equation of the transformed function.
- 6. The graph of $f(x) = x^3$ is stretched vertically by a factor of 6. The graph is then translated 9 units to the right and 3 units down. Write the equation of the transformed function.

Graphing Cubic Functions

Reteach

The graph of the parent function $f(x) = x^3$ can be transformed into $g(x) = a \left(\frac{1}{b}(x-h)\right)^3 + k$.

Each parameter (a, b, h, and k) affects the transformation of the function:

а	a < 1 Vertical Compression	a > 1 Vertical Stretch		a < 0 Reflection over <i>x</i> -axis
b	b < 1 Horizontal Compression	b >1 Horizontal Stretch		b<0 Reflection over y-axis
h	h<0 Translate Left h		h > 0 Translate Right h	
k	k < 0 Translate Down k		k > 0 Translate Up k	

By using reference points, a graph of the transformed function can be created.

$f(x)=x^3$		$g(x) = a\left(\frac{1}{b}(x-h)\right)^3 + k$		
X	У	X	У	
-1	-1	-b+h	−a + k	
0	0	h	k	
1	1	b+h	a+k	

Example Identify the transformations that produce the graph of $g(x) = 2(x+1)^3 - 2$. Then, graph g(x) by applying the transformations to the reference points (-1, -1), (0, 0), and (1, 1).

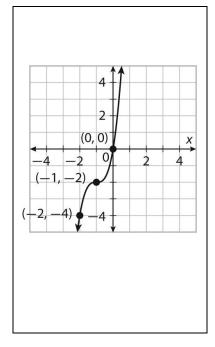
<u>Transformations</u>

Reference Points

Graph

a = 2		
Vertical Stretch by 2		
b = 1		
No Horizontal Stretch or Compression		
h = -1		
Translate Left 1		
k = −2		
Translate Down 2		

Original Points	Х	У
(-1, -1)	-1+(-1) = -2	-2+(-2)=-4
(0, 0)	-1	-2
(1, 1)	1+(-1)=0	2+(-2)=0



LESSON 5-2

Graphing Polynomial Functions

Reteach

To sketch $f(x) = a(x - x_1)(x - x_2)...(x - x_n)$:

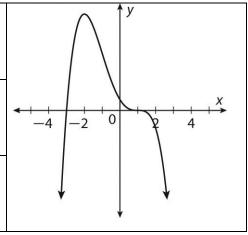
n = degree a = constant factor	End Behavior	Graph Description	<i>x</i> -intercepts	
<i>n</i> odd <i>a</i> > 0	as $x \to -\infty$, $f(x) \to -\infty$ as $x \to +\infty$, $f(x) \to +\infty$	Uphill	$(x-x_1)^{odd}$	
<i>n</i> odd <i>a</i> < 0	as $x \to -\infty$, $f(x) \to +\infty$ as $x \to +\infty$, $f(x) \to -\infty$	Downhill	Crosses <i>x</i> -axis at <i>x</i> ₁	
<i>n</i> even <i>a</i> > 0	as $x \to -\infty$, $f(x) \to +\infty$ as $x \to +\infty$, $f(x) \to +\infty$	Opens up	$(x-x_2)^{\text{even}}$	
<i>n</i> even <i>a</i> < 0	as $x \to -\infty$, $f(x) \to -\infty$ as $x \to +\infty$, $f(x) \to -\infty$	Opens down	Tangent to x -axis at x_2	

Example Sketch the graph of the polynomial function $f(x) = \left(-\frac{1}{5}\right)(x+3)(x-1)^3$.

$$n = 4$$
 (even), $a = -\frac{1}{5}$ ($a < 0$) \rightarrow Opens down

(x+3) raised to an odd power \rightarrow crosses at x=-3

(x-1) raised to an odd power \rightarrow crosses at x=1



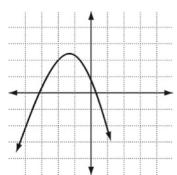
LESSON 5-2

Graphing Polynomial Functions

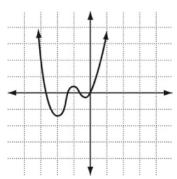
Practice and Problem Solving: A/B

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.

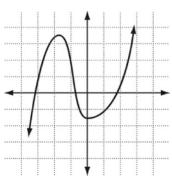
1.



2.



3.



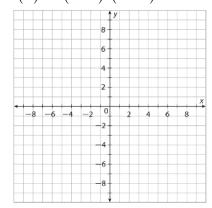
Use a graphing calculator to determine the number of turning points and the number and type (global or local) of any maximum or minimum values.

4.
$$f(x) = x(x-4)^2$$

5.
$$f(x) = -x^2(x-2)(x+1)$$

Graph the function. State the end behavior, *x*-intercepts, and intervals where the function is above or below the *x*-axis.

6. $f(x) = -(x-1)^2(x+3)$



7. f(x) = (x+2)(x-3)(x-1)

End behavior:

x-intercepts:

Above *x*-axis:

Below x axis:

End behavior:

x-intercepts:

Above *x*-axis:

Below x-axis: _____

LESSON Adding and Subtracting Polynomials

Reteach

Example
$$(-3x^4 + 2x - x^3 - 12) + (4 + 2x^4 - x^2 + 9x)$$

1. Write in standard form.

 $-3x^4 - x^3 + 2x - 12$

$$-x^4 - x^3 - x^2 + 11x - 8$$

$$(-3x^4 + 2x - x^3 - 12) + (4 + 2x^4 - x^2 + 9x) = -x^4 - x^3 - x^2 + 11x - 8$$

$$(-x+5x^3+2x^4-10x)-(4x^2-2x-x^4+1)=3x^4+5x^3-5x^2-8x-1$$

Adding and Subtracting Polynomials

Practice and Problem Solving: A/B

Identify the degree of each monomial.

1.
$$6x^2$$

2.
$$3p^3m^4$$

3.
$$2x^8y^3$$

Rewrite each polynomial in standard form. Then identify the leading coefficient, degree, and number of terms.

4.
$$6 + 7x - 4x^3 + x^2$$

5.
$$x^2 - 3 + 2x^5 + 7x^4 - 12x$$

Add or subtract. Write your answer in standard form.

6.
$$(2x^2-2x+6)+(11x^3-x^2-2+5x)$$
 7. $(x^2-8)-(3x^3-6x-4+9x^2)$

7.
$$(x^2-8)-(3x^3-6x-4+9x^2)$$

8.
$$(5x^4 + x^2) + (7 + 9x^2 - 2x^4 + x^3)$$

9.
$$(12x^2 + x) - (6 - 9x^2 + x^7 - 8x)$$

Solve.

- 10. An accountant finds that the gross income, in thousands of dollars, of a small business can be modeled by the polynomial $-0.3t^2 + 8t + 198$, where t is the number of years after 2010. The yearly expenses of the business, in thousands of dollars, can be modeled by the polynomial $-0.2t^2 + 2t + 131$.
 - a. Find a polynomial that predicts the net profit of the business after *t* years.
 - b. Assuming that the models continue to hold, how much net profit can the business expect to make in the year 2016?

LESSON 6-2

Multiplying Polynomials

Reteach

You can multiply polynomials horizontally or vertically.

Example Find the product by multiplying horizontally. $(x-5)(3x+x^2-7)$

Multiply each term of the first polynomial by each term of the second polynomial, then simplify.

1. Write polynomials in standard form.

$$(x-5)(x^2+3x-7)$$

2. Distribute *x* and −5.

$$x(x^2) + x(3x) + x(-7) + (-5)(x^2) + (-5)(3x) + (-5)(-7)$$

3. Simplify.

$$x^3 + 3x^2 - 7x - 5x^2 - 15x + 35$$

4. Combine like terms.

$$x^3 - 2x^2 - 22x + 35$$

Example Find the product by multiplying vertically. $(x-5)(3x+x^2-7)$

1. Write each polynomial in standard form.

$$x^2 +3x -7$$

2. Multiply –5 and $(3x + x^2 - 7)$.

$$\frac{x}{-5x^2}$$
 $\frac{-5}{-15x}$ $\frac{-35}{+35}$

3. Multiply x and $(3x + x^2 - 7)$.

$$\frac{x^3}{x^3} + 3x^2 - 7x$$

4. Combine like terms.

LESSON

Multiplying Polynomials

Practice and Problem Solving: A/B

Find each product.

1.
$$4x^2(3x^2+1)$$

2.
$$-9x(x^2+2x+4)$$

3.
$$-6x^2(x^3+7x^2-4x+3)$$

4.
$$x^3(-4x^3+10x^2-7x+2)$$

5.
$$-5m^3(7n^4-2mn^3+6)$$

6.
$$(x+2)(y^2+2y-12)$$

7.
$$(p+q)(4p^2-p-8q^2-q)$$

8.
$$(2x^2 + xy - y)(y^2 + 3x)$$

Expand each expression.

9.
$$(3x-1)^3$$

10.
$$(x-4)^4$$

11.
$$3(a-4b)^2$$

12.
$$5(x^2-2y)^3$$

Solve.

13. A biologist has found that the number of branches on a certain rare tree in its first few years of life can be modeled by the polynomial $b(y) = 4y^2 + y$. The number of leaves on each branch can be modeled by the polynomial $I(y) = 2y^3 + 3y^2 + y$, where y is the number of years after the tree reaches a height of 6 feet. Write a polynomial describing the total number of leaves on the tree.

LESSON 6-4

Factoring Polynomials

Reteach

Factoring a sum of two cubes:

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Example Factor $125a^3 + 8$.

$$125x^3 + 8$$

$$(5x)^3 + (2)^3$$

Recognize the sum of two cubes.

$$(5x + 2)((5x)^2 - (5x)(2) + (2)^2)$$

$$(5x+2)(25x^2-10x+4)$$

Factor using factoring pattern.

Simplify.

Factoring a difference of two cubes:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Example Factor $27a^3 - 64$.

$$27a^3 - 64$$

$$(3a)^3 - (4)^3$$

Recognize the difference of two cubes.

$$(3a-4)((3a)^2+(3a)(4)+(4)^2)$$

Factor using factoring pattern.

$$(3a-4)(9a^2+12a+16)$$

Simplify.

LESSON

Factoring Polynomials

Practice and Problem Solving: A/B

Simplify each polynomial, if possible. Then factor it.

1.
$$3n^2 - 48$$

2.
$$3x^3 - 75x$$

3.
$$9m^4 - 16$$

4.
$$16r^4 - 9$$

5.
$$3n^6 - 12$$

6.
$$x^6 - 9$$

7.
$$3b^7 + 12b^4 + 12b$$

8.
$$50v^6 + 60v^3 + 18$$

9.
$$x^3 - 64$$

10.
$$x^3 - 125$$

11.
$$x^6 - 64$$

12.
$$x^6 - 1$$

Factor each polynomial by grouping.

13.
$$8n^3 - 7n^2 + 56n - 49$$

14.
$$5x^3 - 6x^2 - 15x + 18$$

15.
$$9r^3 + 3r^2 - 21r - 7$$

16.
$$25v^3 + 25v^2 - 15v - 15$$

17.
$$120b^3 + 105b^2 + 200b + 175$$

18.
$$120x^3 - 80x^2 - 168x + 112$$

Solve.

19. A square concert stage in the center of a fairground has an area of $4x^2 + 12x + 9$ ft². The dimensions of the stage have the form cx + d, where c and d are whole numbers. Find an expression for the perimeter of the stage. What is the perimeter when x = 2 ft?