From the Teacher: J. Backster
Class: Algebra 1
Periods: 3,4,5
Assignment: Weeks 2 and 3

```
If turning in paper packet and work, make sure to
    include this header information on all pages!
From the Student:
Student Name
Teacher Name
Name of class
Períod #
Assignment #
```


Distance Learning 2020 Weeks 2 and 3

This PDF has the assignments for Weeks 2 and 3. Do not go to the school to pick up this packet. You do not have to print this packet. Just write the problems and solutions on binder paper and text me pictures of your work through the Remind App. You must write your name in pen on each page of your assignment. Follow the labeling shown above.

ONLY If you can't take pictures of your work and can't send them to me digitally will you need to go to West High on April 24 between 9:30 am and 4 p.m to get this packet.
The work in this packet is not officially due until 5/15/2020.
My office hours are $10 \mathrm{am}-12 \mathrm{pm}, \mathrm{M}-\mathrm{F}$. You can reach me through texts on the Remind App.

Week 2

Graphing quadratic functions in Standard Form \& Zeros of a function

Week 2: Day 1 (turn in by 5/8/2020): Graphing Quadratic Functions in Standard Form
Read over notes on Graphing quadratic functions in standard form.
Assignment \#1 is Standard Form worksheet (see page 4 of this document)
Other resources that can help are
Finding the axis of symmetry and the vertex
https://youtu.be/iKt6vjAygLc
https://youtu.be/5hQqj8EHNqo

Week 2: Day 2-3 (turn in by 5/8/2020): Solve Quadratic equations graphically
Read over notes on Solving quadratic equations graphically. Can also read the book, Explain 1 in 20.1 on p.938-939.

Assignment \#2 is p. 945 \#3-10 (page 5 and 6 of this document)
Other resources that can help are
https://youtu.be/reRSfNfmcsk (Sound isn't very loud, but good content)
Week 2: Day 4 (turn in by 5/8/2020): Factored form of a quadratic equation
Read over notes on Factored form of a quadratic equation. Can also read the book, Explain $1 \& 2$ in 20.2 on p.952-953

Assignment \#3 is p. 958 \#5-14 (page 7 of this document)
Other resources that can help are
Rewriting in standard form
https://youtu.be/uFBbdMh2k_E
https://youtu.be/gVracHjxQyM

Week 2: Day 5 (turn in by 5/8/2020): Zero Product property
Read over notes on Zero Product Property. Can also read the book, Explore and Explain 1 in 20.3 on p.961-962.
Assignment \#4 is p. 966 \#1-8 (page 8 of this document)
Other resources that can help are
On Khan Academy
https://youtu.be/yCcMCPHFrVc

Week 3

Factoring Trinomials and solving by factoring
Week 3: Day 1-2 (turn in by 5/15/2020): Factoring Trinomials
Read over notes on Factoring Trinomials
Assignment \#1 is p. 992 \#3-8 and p. 1004 \#1-6 (pages 9 and 10 of this document)
Other resources that can help are
Factoring Common Factor out:
On Khan Academy (Three videos in a row that might help)
https://youtu.be/EDebmfT5Nsk
Factoring Trinomials using box method:
On Algeomulus Prep Academy (West High student made!)
Another text description: https://www.basic-mathematics.com/factoring-using-the-boxmethod.html
https://youtu.be/d8MjmwHV-84
https://youtu.be/SWtQGRNKHOU

Week 3: Day 3-4 (turn in by 5/15/2020): Solve Quadratic equations by factoring Read over notes on Solving quadratic equations by factoring.
Assignment \#2 is p. 1005 \#9-14 (page 11 of this document)
Other resources that can help are
On Algeomulus Prep Academy (West High student made!)

Week 3: Day 5 (turn in by 5/15/2020): Using Special Factors to solve equations
Read over notes on Using special factors to solve equations.
Assignment \#3 is Special Cases worksheet (see page 4 of this document)
Other resources that can help are
https://youtu.be/WPDAiXYmRoQ
On Algeomulus Prep Academy (West High student made!)
https://youtu.be/Zz1UjoentGk
https://youtu.be/EGzt8twijXc
https://youtu.be/HLNSouzygw0

Standard Form (Week 2 Assignment \#1)

Algebra 1
Give the axis of symmetry and the coordinates of the vertex of the quadratic function.

1. $y=2 x^{2}+4 x+6$
2. $y=-3 x^{2}+6 x-2$
3. $y=-x^{2}+2 x-2$
4. $y=x^{2}+2 x-3$

Graph the function. State the domain and range.
5. $y=2 x^{2}+8 x+10$
6. $y=-x^{2}+2 x+1$
7. $y=-4 x^{2}+32 x-62$
8. $y=2 x^{2}+12 x+19$

Special Cases (Week 3 Assignment \#3)

Algebra 1
Factor.

1. $x^{2}+24 x+144$
2. $y^{2}-14 y-49$
3. $6 h^{2}+12 h+6$
4. $x^{2}-121$
5. $10 n^{2}-10$
6. $16 j^{2}-25 k^{2}$

Solve the equation by factoring.
7. $y^{2}-10 y=-25$
8. $49 k^{2}-14 k+7=6$
9. $x^{2}+4=20$
10. $k^{2}+7 k+3=2 k-3$
11. $3 y^{2}=300$
12. $16 y^{2}-36=0$
13. $121 x^{2}-16=0$
14. $5 x^{2}+92 x+300=12 x-20$

Evaluate: Homework and Practice

Solve each equation by graphing the related function and finding its zeros.

1. $3 x^{2}-9=-6$
2. $2 x^{2}-9=-1$

3. $7 x+10=-x^{2}$

4. $-1=-x^{2}$

Solve each equation by finding points of intersection of two functions.
7. $2(x-3)^{2}-4=0$

9. $-(x-3)^{2}+4=0$

11. $(x+1)^{2}-1=0$

8. $(x+2)^{2}-4=0$

10. $-(x+2)^{2}-2=0$

12. $(x+2)^{2}-2=0$

Write each function in standard form.
5. $y=5(x-2)(x+1)$
6. $y=2(x+6)(x+3)$
7. $y=-2(x+4)(x-5)$
8. $y=-4(x+2)(x+3)$
9. Which of the following is the correct standard form of $y=3(x-8)(x-5)$?
a. $y=3 x^{2}+39 x-120$
b. $y=x^{2}-13 x+40$
c. $y=3 x^{2}-39 x+120$
d. $y=x^{2}-39 x+40$
e. $y=3 x^{2}+13 x+120$
10. The area of a Japanese rock garden is $y=7(x-3)(x+1)$. Write $y=7(x-3)(x+1)$ in standard form.

Write each function in standard form. Determine x-intercepts and zeros of each function.
11. $y=-(2 x-4)(x-2)$
12. $y=2(x+4)(x-2)$
13. $y=-3(x+1)(x-3)$
14. $y=2(x+2)(x-1)$

(1) Evaluate: Homework and Practice

Find the solutions of each equation.

1. $(x-15)(x-22)=0$
2. $(x+2)(x-18)=0$

- Online Homework - Hints and Help - Extra Practice

Find the zeros of each function.
3. $f(x)=(x+15)(x+17)$
4. $f(x)=\left(x-\frac{2}{9}\right)\left(x+\frac{1}{2}\right)$
5. $f(x)=-0.2(x-1.9)(x-3.5)$
7. $f(x)=\frac{3}{4}\left(x-\frac{3}{4}\right)$
6. $f(x)=x(x+20)$

Evaluate: Homework and Practice

Use algebra tiles to model the factors of each expression.

1. $x^{2}+6 x+8$

$$
x^{2}+6 x+8=(x \square)(x \square)
$$

2. $x^{2}+2 x-3$

$$
x^{2}+2 x-3=(x \square)(x \square)
$$

Factor the expressions.
3. $x^{2}-15 x+44$
4. $x^{2}+22 x+120$
5. $x^{2}+14 x-32$
6. $x^{2}-12 x-45$
7. $x^{2}+10 x+24$
8. $x^{2}+7 x-8$

Solve each equation.
9. $x^{2}+19 x=-84$

都
10. $x^{2}-18 x=-56$
13. $x^{2}+6 x=135$

Elaborate

9. Discussion What happens if you do not remove the common factor from the coefficients before trying to factor the quadratic equation?
\qquad
\qquad
\qquad
\qquad
\qquad
10. Explain how you can know there are never more than two solutions to a quadratic equation, based on what you know about the graph of a quadratic function.
\qquad
\qquad
\qquad
11. Essential Question Check-In Describe the steps it takes to solve a quadratic equation by factoring.
\qquad
\qquad
\qquad

Evaluate: Homework and Practice

Factor the following quadratic expressions.

1. $6 x^{2}+5 x+1$
2. $9 x^{2}+33 x+30$
3. $24 x^{2}-44 x+12$
4. $3 x^{2}-2 x-5$
5. $-10 x^{2}+3 x+4$
6. $-15 x^{2}+21 x+18$

Solve the following quadratic equations.
9. $5 x^{2}+18 x+9=0$
10. $12 x^{2}-36 x+15=0$
11. $6 x^{2}+28 x-2=2 x-10$
12. $-100 x^{2}+55 x+3=50 x^{2}-55 x+23$
13. $8 x^{2}-10 x-3=0$
14. $-12 x^{2}=34 x-28$
15. $(8 x+7)(x+1)=9$
16. $3(4 x-1)(4 x+3)=48 x$

Graphing Quadratic Functions in Standard Form
Standard form of a Quadratic Equation
$y=a x^{2}+b x+c$, where a, b, and c are real numbers and $a \neq 0$.
*When graphing given standard form, will need vert tex foist like when given vertex form (last week)
\Rightarrow Start with the axis of symmetry (the x-coordinate of the vertex!)
The axis of symmetry for a quadratic equation in standard form is given by the equation $\quad x=\frac{-b}{2 a}$

The vertex of a quadratic equation in standard form is

$$
\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)
$$

$\uparrow \uparrow$ after finding the x-coordinate, plug that valve formula into the equation to find the y-value (like we do with any other point)

Ex Give the axis of symmetry and the coordinates of the vertex of the quadratic equation
a $y=2 x^{2}+8 x+12$

Axis of Symmetry $\Rightarrow x=\frac{-b}{2 a}$

$$
a=2 \quad b=8
$$

$$
x=\frac{-8}{2(2)}=\frac{-8}{4}
$$

$x=-2$ Axis of Symmetry
b $y=x^{2}-12 x-2$

$$
a=1 \quad b=-12
$$

Axis of Symmetry $x=\frac{-(-12)}{2(1)}=\frac{12}{2}$

$$
x=6
$$

c. $y=-4 x^{2}+12$

Axis of Symmetry

$$
\begin{aligned}
& x=\frac{-0}{\left(\frac{1-1)}{}=\frac{0}{-8}\right.} \\
& x=0
\end{aligned}
$$

Vertex $(-2, ?)$ to find y, plug $x(-2)$ into equation!

$$
\begin{aligned}
y & =2(-2)^{2}+8(-2)+12 \\
y & =2(4)-16+12 \\
& =8-16+12 \\
& =-8+12 \quad \text { vertex is }(-2,4) \\
y & =4
\end{aligned}
$$

Vertex is $(6, ?)$

$$
\left.\begin{array}{rl}
y & =(6)^{2}-12(6)-2 \\
& =36-72-2 \\
& =-36-2 \\
y & =-38
\end{array} \text { Vertex is }(6,-38)\right)
$$

How to Graph a Quadratic function in Standard form

1) Find the vertex (x-coordinate is $x=\frac{-b}{2 a}$, then plug into equation to find y-coordinate)
2) Make a table of points with 2 points on either side of the vertex
3) Plot 5 points from table and draw parabola

Ex Graph the function
a $y=2 x^{2}-16 x+30$

b $y=-x^{2}-4 x$

$$
\begin{aligned}
& \text { Vertex: } a=-1 \quad b=-4 \\
& x=\frac{-(-4)}{2(-1)}=-\frac{4}{-2}=-2 \\
& y=-(-2)^{2}-4(-2) \\
& =-(4)+8 \\
& =-4+8 \\
& =4 \\
& \text { Vertex: }(-2,4)
\end{aligned}
$$

Solve Quadratic Equations Graphically
zero of a function - an x-value that makes the value of a function O.

* Zeros of a function are the x-intercepts of the function's graph

A quachatic function can have 0,1 , or 2 zeros

Solving Quadratic Equations by Graphing

- rewrite equation so it is $=0$ (if necessary)
- replace 0 with y and graph the equation (look at previous notes, depending on form in!)
- Find the x-intercepts, which are the zeros of the function
* since looking for when equation $=0$, these x-intercepts (zeros) are the solutions of the original equation

Ex Solve by graphing the related function
a

$$
\begin{aligned}
& 3 x^{2}+2=5 \\
& -5-5 \quad \text { t make }=0 \\
& 3 x^{2}-3=0 \\
& y=3 x^{2}-3 \text { t make } 0 \text { into } y
\end{aligned}
$$

Istandand form
so find vertex using $x=\frac{-b}{2 a}$

$$
\begin{aligned}
a & =3 \quad b=0 \\
x & =\frac{-0}{2(3)}=\frac{0}{6}=0 \\
y & =3(0)^{2}-3 \\
& =3(0)-3 \\
& =0-3 \quad \text { Vertex is }(0,-3) \\
y & =-3 \quad
\end{aligned}
$$

x	y
-2	9
-1	0
0	-3
1	0
2	9

$$
\begin{aligned}
& x=-2 \\
& y=3(-2)^{2}-3 \\
&=3(4)-3 \\
&=12-3 \\
&=9
\end{aligned}
$$

$$
x=1
$$

$x=2$ is the
same by
symmetry

A Since $x=-1$ and $x=1$ are the zeros (x-int) \& the equations $=0$ they are the solutions!

$$
x=-1,1
$$

b)

$$
\begin{aligned}
& \begin{array}{l}
6 x+8=-x^{2} \\
+x^{2} \\
x^{2}+6 x+8=0
\end{array} \quad \text { \& make }=0 \\
& \begin{aligned}
y=x^{2}+6 x+8 \quad \text { and replace } 0 \text { with } y \\
\begin{aligned}
1 \\
a
\end{aligned} \quad \text { in standard form so }
\end{aligned} \\
& \qquad \begin{array}{rl}
\text { vertex: } x & x=\frac{-6}{2(1)}=\frac{-6}{2}=-3 \\
& =(-3)^{2}+6(-3)+8 \\
& =9-18+8 \\
& =-9+8 \\
y & =-1
\end{array} \quad \text { Vertex: }(-3,-1)
\end{aligned}
$$

$y=x^{2}+6 x+8 \quad *$ in standard form so use $x=\frac{-b}{2 a}$ to find vertex

x	y
-5	3
-4	0
-3	-1
-2	0
-1	3

$x=-5$
$y=(-5)^{2}+6(-5)+8$
$=25-30+8$
$=-5+8$
$=3$
*also - 1 by symmetry

$$
x=-4
$$

$$
\begin{aligned}
y & =(-4)^{2}+6(-4)+8 \\
& =166-24+8
\end{aligned}
$$

$$
J=16-24+8
$$

$$
=-8+8
$$

$$
=0
$$

* also $x=-2$ by symmetry

* zeros $(x$-int) are at -2 and -4
and since looking for when the equation is $=0$, they are the solutions!

$$
x=-2 \text { and } x=-4
$$

c $2(x-3)^{2}-2=0$

$$
y=2(x-3)^{2}-2
$$

*already $=0$ so just replace 0 with y
In Vertex form $y=a(x-h)^{2}+k$, So Vertex is (h, k), no work to find it!!

Vertex: $(3,-2) \quad$| x | y |
| :---: | :---: |
| | 1 |
| | 6 |
| | |
| | 3 |
| | -2 |
| | 4 |
| | 0 |
| | |
| | |

$$
\begin{aligned}
& x=1 \\
& y=2(1-3)^{2}-2 \\
&=2(-2)^{2}-2 \\
&=2(4)-2 \\
&=8-2 \\
& y=6
\end{aligned}
$$

*also have $x=5$ by symmetry!

$$
\begin{aligned}
& x=4 \\
& y=2(4-3)^{2}-2 \\
&=2(1)^{2}-2 \\
&=2(1)-2 \\
&=2-2 \\
& y=0
\end{aligned}
$$

* Zeros are at 2 and 4 Since looking for when equation is equal to 0 they are the solutions!!

$$
x=2 \text { and } x=4
$$

What happens if the graph looks like where there are no zeros?
\Rightarrow Then there is No Solution!
 or

* Remember Quadratic equations can have 2, 1, or No Solution!

Factored Form of a Quadratic Equation
Factored form of a quadratic equation
Day 4

$$
y=k(x-a)(x-b) \quad \text { where } k \neq 0
$$

\$ Let's look at the graph's of $y=k(x+1)(x-2)$ for $k=1,3$, and -2
\Rightarrow so in this case $a=-1$ and $b=2$ (they are like h in Vertex form opposite of what it looks
 like)

* Notice that the x-intercepts (zeros) are -1 and 2
(the a \& b valves, what are be subtracted from x in each ()!) k does not change the zeros, just stretches the graph or flips .t over
So, the factors (the parentheses) in factored form give us the x-intercepts (zeros)
* in $y=k(x-a)(x-b) \quad a \& b$ cere the x-intercepts (zeros) of the function!
Ex Write each function in standard form. Determine the x-intercepts \& zeros of each function
a $y=4(x-5)(x-1)_{b}$
* Let's find x-intercepts (zeros) first since easy in current form (factored form)
Since $a=5$ and $b=1$
The x-intercepts \& zeros are $x=5 \& x=1$
* To write in Standard form, multiply 2 items then that answer with the remaining item

$$
\begin{aligned}
y= & 4(\underbrace{(x-5)(x-1)} \\
& x \begin{array}{|l|l|}
\hline 2 & -5 x \\
& -1 \\
& -\underline{x} \\
y & =4 \\
y & \left.4 x^{2}-6 x+5\right) \\
y & =4 x^{2}-24 x+20
\end{array}
\end{aligned}
$$

b $y=-3(x+4)(x+3)$
x-intercepts \& zeros are

$$
x=-4 \& x=-3 \quad \& \text { since }
$$

Standard form

$$
\begin{aligned}
& y=-3(\underbrace{(x+4)(x+3)(x+3)} \\
& x^{2}+3 x+4 x+12 \\
& =x^{2}+7 x+12 \\
& y=-3\left(x^{2}+7 x+12\right) \\
& y=-3 x^{2}-21 x-36
\end{aligned}
$$

Using Zero Product Property to Solve Equations
Zero Product Property
For all real numbers a and b, if the product of the two quantities equals zero, then at least one of the quantities equals zero If $a b=0$, then $a=0$ or $b=0$

* The only way to get zero when multiplying is for 1 of the items being multiplied to be O !

Ex Find the zeros of each function meaning find x salves that make the function $=0$!
a $f(x)=(x-16)(x+21)$
\& replace $f(x)$ or y with 0 since looking for zeros!

$$
0=(x-16)(x+21)
$$

* Apply Zero Product Property (since 2 things multiplied to get 0!) meaning either $1^{\text {st }}()=0$ or $2^{n u}()=0$
$x-16=0$ or $x+21=0$
$+16+16 \quad-21 \quad-21 \quad$ now solve new equation!

$$
x=16 \text { or } x=-21
$$

b. $g(x)=-4(x-8) \&$ replace $g(x)$ with 0
$0=-4(x-8)$

* apply zero Product Property

$-4=0 \quad x-8=0$
\uparrow +8\quad ts
not relevant Since no variable!

c $h(x)=3 x(x-12)$
$0=3 x(x-12)$

$$
\begin{array}{cr}
\frac{3 x}{3}=\frac{0}{3} & x-12=0 \\
+12 & +12 \\
x=0 & \text { or } x=12
\end{array}
$$

d $k(x)=\frac{1}{2}(x-2)(x+3)$

$$
0=\frac{1}{2}(x-2)(x+3)
$$

*only care about factors that have variable! (so ignore $\frac{1}{2}$)

$$
\begin{array}{ll}
x-2=0 & x+3=0 \\
+2+2 & -3=3 \\
x=2 \text { or } x=-3
\end{array}
$$

Factoring Trinomials
factoring - the process of writing a polynomial as a product
\Rightarrow like Jeopardy style question of multiplying
What was multiplied to get $3 y+6$ or $x^{2}+5 x-14$?

$$
3(y+2) \quad(x+7)(x-2)
$$

Factor out a common factor
Ex $4 x^{2}+26 x+42$

* look for the greatest Common factor (GLF) of the three terms a meaning find the largest number that goes into the coefficients $4,26,42$
* one way is to list all numbers (factors) of the \#s and identify the longest $G C F$ of 4,26 , and 42 is 2 .
So can rewrite
$2(?+?+?)$ to find what goes in () ask what multiplied by 2 (the GLF) gets each term

$$
\begin{array}{lccc}
& 2\binom{0}{\vdots}=4 x^{2} & 2(?)=26 x & 2(?) \\
2 x^{2} & \vdots & \frac{1}{2} & \text { or } \quad \frac{4 x^{2}}{2}+\frac{26 x}{2}+\frac{42}{2} \\
2\left(2 x^{2}+13 x+21\right) & 21 & 2\left(2 x^{2}+13 x+21\right)
\end{array}
$$

* GCF of a polynomial can contain variables, but in order for that to happen all the terms must have a variable
Ex $6 x^{3}-21 x^{2}-45 x$
* All 3 terms have at least $1 x$ so $G C F$ has an x, Next find $G C F$ of $6,-21,-45$ GCF of $6,-21,-45$ is 3 so can "pull out" $3 x$

You can easily check your answer by multiplying out your answer to see if you get the question!!
*At Always pull out any common factors before factoring polynomials!!!

Factor $a x^{2}+b x+c \rightarrow$ use box \& x method
\rightarrow Before we factor lets remember multiplying with the box (area model)

$$
(x+7)(x-2)
$$

	7	
x	x^{2}	$7 \underline{x}$
-2	$-2 x$	-14

$x^{2}+5 x-14$
$\uparrow \uparrow \uparrow \uparrow$
top left
Square
bottom
right
square
combination of other 2
boxes

* $1^{\text {st }}$ term in answer comes from multiplying $1^{\text {st }}$ terms of binomials
* last term in answer comes from multiplying $2^{\text {nd }}$ terms of binomials
* Middle term is a combination of the terms in the binomials (this is where we need to find the right combination!)

Ex Factor $5 x^{2}-17 x+6$

1) Fill in 4 spots of the box and X

2) Looking for 2 items that multiply to make the top of the X (in our example $30 x^{2}$)
and add up to make the bottom of the x (in our example $-17 x$)
\rightarrow since multiply to be x^{2} and add p to x, both have an x !
Now just to find 2"s that multiply to make +30 and add p to -17
1 way is to list all pairs that multiply 30
$-1-30$ Since add up a negative \& multiply to be a positive
$-2-15$ and
$-2-15$ both are -
$-3-10$
$-5-6$
\Rightarrow Only pair that adds p to -17 is $-2 \&-15$
So $-2 x \&-15 x$ goes in the 4 remaining empty spots

3) Now need to find the binomials that made this box!

* Afterfinding that $1^{\text {st }}$ item use it to find
the remaining 3 items

$$
\begin{array}{ccc}
x(?)=5 x^{2} & x(?)=-2 x & 5 x(?)=-15 x \\
{ }_{5 x} & y & -2
\end{array}
$$

Nice check built in, can see that $-2(-3)=6$ so we did something right!
4) Write out binomials from box

$$
(5 x-2)(x-3)
$$

A few notes...

$$
\begin{array}{c|c|c|}
\hline & -3 \\
5 x & 5_{x}^{2} & -15 x \\
-2 & -2 x & 6 \\
\hline & & \\
\hline
\end{array}
$$

$\rightarrow-2 x \&-15 x$ could have been surtched in the box (still gets same binomial)
\rightarrow It doesn't matter the order of the () in the answer only what is inside the () matches So could write answer as

$$
(x-3)(5 x-2)
$$

Ex Factor
a $x^{2}+7 x+6$
A Can we pull out something?
$\rightarrow N_{0}$ since no variable in last term and $1^{\text {st }}$ terms coefficient is 1 ($G C F=1$ so nothing *Now factor trinomial to pullout)

x		
x	x^{2}	$6 x$
1	$1 x$	6

$$
\begin{aligned}
& \frac{6 x^{2}}{1 x-6 x} \Rightarrow 7 x \\
& 2 x 3 x \Rightarrow 5 x
\end{aligned}
$$

* $-x^{2} \& 6 x$ (top row) GCFI Bx

$$
(x+1)(x+6)
$$

$\left.\begin{array}{l}-x(?)=x^{2} \text { need } x \\ -x(?)=6 x \text { need } 6\end{array}\right\}$ top binomial
$-x(?)=x$ need $1 \leftarrow$ side/botHow $1(6)=6$ so fits box
b) $8 x^{2}-18 x-5$
\$ Can we pull something out?
\rightarrow No since no variable in last term and GCF of 8,18 , and 5 is 1

* Now factor trinomial

$$
\begin{aligned}
& 8 x^{2}(-5)=\frac{-40 x^{2}}{-4 x ~ 10 x} \Rightarrow 6 x \\
& \Rightarrow \text { sum is } \\
& \begin{array}{l}
-2 x \text { 20x } \\
2 x-20 x
\end{array} \Rightarrow 18 x \quad \text { Right \# }
\end{aligned} \quad \begin{aligned}
& 8 x^{2} \& 2 x \text { (top row) GL just s } \\
& 2 x(?)=8 x^{2} \text { need } 4 x \\
& 2 x(?)=2 x \text { need } 1 \\
& 4 x(?)=-20 x \text { need }-5 \\
& 1(-5)=-5 \text { so fits box binomial }
\end{aligned}
$$

$$
-2 x 20 x \Rightarrow 18 x \nRightarrow \text { Right \# wrong sign! }
$$

$$
2 x-20 x \Rightarrow-18 x \quad \text { So just switch signs of numbers! }
$$

c. $x^{2}-11 x+30$

* Can we pull something ort? No
* Now factor trinomial

$$
(x-5)(x-6)
$$

d $2 x^{2}+7 x-9$ Can we pull something out? No. Now factor trinomial
x

x

$2 x^{2}$	$-2 x$
$9 x$	-9

$(2 x+9)(x-1)$

$$
(2 x+9)(x-1)
$$

e) $15 x^{2}-42 x-9$
\& Can we pull some thing out? GCF of 15,42 , and 9 is 3 so Yes!

$$
3\left(5 x^{2}-14 x-3\right) \quad \frac{15 x^{2}}{3}=5 x \quad-\frac{42 x}{3}=-14 x \quad \frac{-9}{3}=-3
$$

* Now factor trinomial in 1)

x -3 $5 x$ 5_{x}^{2} $-15 x$ $1 x$$\|-3$

$3(5 x+1)(x-3)$ *Remember to include the $G(F$, that we pulled out, in front of the binomials

$$
\begin{gathered}
f 36 x^{2}+72 x+20 \\
4\left(9 x^{2}+18 x+5\right)
\end{gathered}
$$

* Now trinomial

	5	
$3 x$	5	
$9 x^{2}$	$15 x$	
	$3 x$	5

$4(3 x+5)(3 x+1)$
g $2 x^{2}+26 x-60$

$$
2\left(x^{2}+13 x-30\right)
$$

-2 x^{2} $-2 x$ $15 x$	-30

$2(x-2)(x+15)$

Solving Quadratic Equations by Factoring
By factoring we can write a quadratic equation in factored form, then use the zero product property to solve the equation.
Make the equation $=0$ BEFORE factoring (so can apply zero product property after factoring)
\Rightarrow Keep/make x^{2} term positive (if x^{2} term is negative, factor out a " -1 " to make the x^{2} tern positive)
Ex Solve each equation by factoring

$$
\begin{gathered}
\text { a } x^{2}-7 x=-10 \\
x^{2}-7 x+10=0
\end{gathered} * \text { Make }=0
$$

* factor nonzero side (No GCF, so onto box and X)

$$
\begin{aligned}
& (x-2)(x-5)=0 \\
& \begin{array}{l}
x-2=0 \quad x-5=0 \\
+2+2 \\
15+5 \\
x=2
\end{array} * \text { or } x=5
\end{aligned}
$$

b. $4 x^{2}-4 x-3=0$

* Apply Zero Product Property
$\begin{array}{ll}2 x+1=0 & 2 x-3=0 \\ -1 & -1\end{array}$
$\frac{2 x}{2}=\frac{-1}{2} \quad \frac{2 x}{2}=\frac{3}{2} \quad *$ Solve the equations
$x=-1 / 2$ or $x=3 / 2$
c) $x_{+5 x}^{2}-14=-5 x$ Hake $=0$, make sure trinomial is in standard form

$$
x^{2}+5 x-14=0
$$

* Factor nonzero side, $N_{0} G C F>1$ so use $\boxplus X$

	x	7
x	x^{2}	$7 x$
	$-2 x$	-14

$7 x<-2 x$	$-14 x^{2}$	$\frac{-14 x^{2}}{-7 x} 2 x$	$\Rightarrow-5 x$
$5 x$	$-7 x-2 x$	$\Rightarrow 5 x$	

$$
\begin{gathered}
(x+7)(x-2)=0 \\
x+7=0 \quad x-2=0 \\
-7-7 \quad+2+2 \\
x=-7 \text { or } x=2
\end{gathered}
$$

* Apply Zero Product Property and solve resulting equations
d $12 x^{2}+48 x=-45 \quad$ +Make $=0$ and factor non zero side
$\frac{12 x^{2}}{3}+\frac{48}{3} x+\frac{45}{3}=0 \quad 12,48,45$ has $G C F$ of 3 , so pull out $G L F$ then use $\boxplus X$

$$
3\left(4 x^{2}+16 x+15\right)=0
$$

$2 x$		3
$2 x$	$4 x^{2}$	$6 x$
	$10 x$	15

$$
3(2 x+5)(2 x+3)=0
$$

$$
\begin{array}{rr}
2 x+5=0 & 2 x+3=0 \\
-5-5 & -3=-3 \\
\frac{2 x}{2}=\frac{-5}{2} & \frac{2 x}{2}=\frac{-3}{2} \\
x=-5 / 2 \text { or } x=-3 / 2
\end{array}
$$

*Apply Zero Product property and solve resulting equations
\Rightarrow Remember the factors with out a variable (the GCF) is not relevant when solving the equation
e $x^{2}-x=56$ make $=0$ and factor nonzero side

$$
x^{2}-x-56=0 \quad \text { NO } G C F \text { so } \boxplus x
$$

x
x
7x^{2} $-8 x$ $7 x$ -56$\quad-8 x /-x$

$(x+7)(x-8)=0 \quad *$ Apply Zero Product Property

$$
\begin{aligned}
& x+7=0 \quad x-8=0 \\
& -7=-7 \quad+8+8 \\
& x=-7 \text { or } x=8
\end{aligned}
$$

$f \begin{aligned} & 2 x^{2}+7 x-2=4 x^{2}+4 \text { make }=0 \text { (keep } x^{2} \text { positive, so move every thing to the } \\ & -2 x^{2}-7 x+2 \\ & -2 x^{2}-7 x+2\end{aligned}$ right right side)
$0=2 x^{2}-7 x+6 \quad$ No $G C F$, so use $\boxplus x$

$(x-2)(2 x-3)=0$
$x-2=0 \quad 2 x-3=0$
$+2+2 \quad+3 \pm 3$ $\frac{2 x}{2}=\frac{3}{2}$

$$
x=2 \text { or } x=3 / 2
$$

$$
+3 x^{2}-2 x-5+3 x^{2}-2 x-5
$$

$$
6 x^{2}-2 x-8=0 \quad \& G C F \text { of } 6,2,8 \text { is } 2 \text { so factor out then use } \boxplus X
$$

$$
2\left(3 x^{2}-x-4\right)=0
$$

Using Special Factors to Solve Equations
Perfect Square Trinomials
\Rightarrow Trinomials when factored result in the binomials being the same factor them like any other trinomials！
Ex $\quad x^{2}+10 x+25$

$$
\begin{aligned}
& x+\begin{array}{|l|l|}
x & 5 \\
5 & x^{2} \\
\hline 5 x & 25 \\
\hline
\end{array} \\
& =(x+5)(x+5) \\
& o r=(x+5)^{2}
\end{aligned}
$$

＊Remember pull out common factor first if possible（can be a number and variable）
Ex Factor
a． $3 x^{3}-24 x^{2}+48 x$
all terms have at least $1 x$ \＆$G C F$ of $3,24,48$ is 3
$3 x\left(x^{2}-8 x+16\right)$ so $G C F=3 x$

$$
\frac{3 x^{3}}{3 x}=x^{2} \quad-\frac{24 x^{2}}{3 x}=-8 x \quad \frac{48 x}{3 x}=16 x
$$

x	-4	
x	x^{2}	$-4 x$
-4	$-4 x$	16

$$
\begin{aligned}
& \frac{16 x^{2}}{-2 x-8 x \Rightarrow-10 x} \\
& -4 x-4 x \Rightarrow-8 x
\end{aligned}
$$

$3 x(x-4)^{2}$
＊Remember to include the GCF that was
Ok to write as

$$
3 x(x-4)(x-4)
$$ pulled out．

b $100 y^{2}-20 y+1$ No $G C F>1$ ，so on to $⿴ 囗 十$

$(10 y-1)^{2}$
＊OK if write $(10 y-1)(10 y-1)$

Difference of Two Squares

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Ex Factor

* if see a binomial, then possibly a difference of two squares
\Rightarrow is it subtraction?
\Rightarrow are both terms perfect squares?
c $x^{2}-64 * 2$ terms $\&$ subtraction
$(x)^{2}-(8)^{2} \rightarrow$ both terms can be written as squares so difference of 2 squares! $(x+8)(x-8)$

$$
d 25 r^{2}-49 p^{2}
$$

* No GIF
$(5 r)^{2}-\left(7_{p}\right)^{*} 2$ terms \& subtraction, is it a difference of two squares?
* 2 terms \& subtraction
Yes! So $(a+b)(a-b)$

$$
(5 r+7 p)(5 r-7 p)
$$

$$
a=5 r \quad b=7 p
$$

$$
\begin{aligned}
& \text { e } 81 y^{4}-9 y^{2} \\
& 9 y^{2}\left(9 y^{2}-1\right) \\
& (3 y)^{2}-(1)^{2} \\
& 9 y^{2}(3 y-1)(3 y+1)
\end{aligned}
$$

$$
\text { AGLF! } 9 y^{2} \text {, so pull out }
$$

$(3 y)^{2}-(1)^{2}$ Factor () 2 terms, so factor! subtracting so are the 2 terms perfect squares?
f $16 x^{4}-1 * N_{0} G C F, 2$ terms with subtraction so are both terms perfect squares?

$$
\begin{aligned}
& \left(4 x^{2}\right)^{2}-(1)^{2} \quad x^{4}=x^{2} \cdot x^{2} \sigma\left(x^{2}\right)^{2}! \\
& \left(4 x^{2}-1\right)\left(4 x^{2}+1\right)
\end{aligned}
$$

$$
(2 x)^{2}-(1)^{2}
$$

* Notice the first () has an exponent on x \& subtraction so need to check if difference of two squares

$$
(2 x+1)(2 x-1)\left(4 x^{2}+1\right)
$$ It is! 50 factor t !

Remember when solving an equation by factoring

* make $=0$ if not already
* Factor non zeroside
* Use the Zero Product Property to solve equation

Ex Solve by factoring
a $4 x^{2}+12 x+9=0 \quad *=0$ already, so factor
A No GCF, has 3 terms so $\boxplus X$

$$
\begin{gathered}
\left.\begin{array}{c}
2 x \\
2 x \\
2 x \\
3 \\
\hline
\end{array} \right\rvert\, \begin{array}{c}
6 x \\
\hline 6 x
\end{array} 9 \\
\hline
\end{gathered}
$$

b. $25 x^{2}-1=0$ already $=0$, no $G L F$ so factor

$$
\begin{aligned}
& (5 x)^{2}-(1)^{2} \\
& (5 x+1)(5 x-1)=0 \\
& 5 x+1=0 \quad 5 x-1=0 \\
& -1 \times 1 \\
& \frac{1}{5}=\frac{1}{5} \quad \begin{array}{l}
5 x \\
5 \\
5
\end{array}=\frac{1}{5} \\
& x=-1 / 5 \text { or } x=1 / 5
\end{aligned}
$$

$\Rightarrow 2$ term's with subtraction, so difference of two squares?

* Apply zero Product Property
c $8 x^{4}-2 x^{2}=0 \quad$ already $=0$, has $G C F$ of $2 x^{2}$, so factor out
$2 x^{2}\left(4 x^{2}-1\right)=0$
$(2 x)^{2}-1^{2} \quad()$ has 2 terms and subtraction, so difference of two squares?
$2 x^{2}(2 x+1)(2 x-1)=0$ Apply Zero Product Property, since all 3 factors have variables, 3 equations
$\frac{2 x^{2}}{2}=\frac{0}{2} \quad 2 x+1=0 \quad 2 x-1=0$
$x^{2}=0$ $\frac{2 x}{2}=\frac{-1}{2} \quad \frac{2 x}{2}=\frac{1}{2}$
$x=0 \quad x=-1 / 2 \quad x=1 / 2$
* $x^{2}=0 \Rightarrow$ only \# to square and get 0 is 0 !
* Not quadratic (has x^{4}) so ok that has more than 2 solutions!

