\qquad Date \qquad
\qquad Part A: Expressions [A-SSE.2]

1. Rewrite the expressions by combining like terms and/or distributing. Show your work.
A) $3 x-\frac{3}{4}+\frac{1}{2} x-5+\frac{4}{5} x$
B) $\frac{2}{3}(6 x-5)+\frac{1}{4} x-3 \frac{1}{2}$

Part B: Solving Equations

[A-REI.3, A-REI.1]

2. For each equation, determine the value of x that makes the equation true. Show your work.
A) $2(4-x)=6 x-3$
B) $3 x-2(x+5)=x+6$
3. For each equation, solve for x. Show your work and justify each step.
A) $2 x+A=3$
B) $30=-\frac{x}{J}$
4. Given the equation, determine the value of H when $x=\frac{1}{2}$. Show your work and justify each step. $x+3 H=\frac{5}{2}$
5. Given the equation $a=m(x-y)$, circle all the equations that are a correct step in the process of solving for y.
A) $a m=x-y$
B) $\frac{a}{m}=x-y$
C) $a m-x=-y$
D) $a+y=m x$
6. Solve each inequality for y. Graph the solution set using a number line.
A) $3 y-12<21$
B) $2(5-3 y) \geq 18$

Part C: Writing Equations [A-CED.1]
7. Angelica brings $\$ 32.50$ to the movie theater. She buys 4 tickets and spends $\$ 7.50$ on snacks. Write an equation to solve for the price of a ticket.
\qquad Date \qquad Period \qquad
Part A: Functions [F-IF.2]

1. Determine if the set of points could be on the graph of a function or cannot be on the graph of a function.

A) Circle One: Could be on the graph of a function. Cannot be on the graph of a function.		B) Circle One: Could be on the graph of a function. Cannot be on the graph of a function.		C) Circle One: Could be on the graph of a function. Cannot be on the graph of a function.	
x	y	x	y	x	y
-5	3	-5	4	1	4
-3	3	-3	6	1	6
0	3	0	8	1	8
3	3	3	10	1	10
5	3	5	12	1	12

2. For each function, complete the table of values.
A) $f(x)=5 x$

x	-1	0	1	2	
$f(x)$		0			25

B) $g(x)=-2 x+7$

x	-1	0	1		
$f(x)$	9			1	-9

C) $h(x)=x^{2}+3 x-1$

x	-1	0	1	2	3
$f(x)$					

Part B: Graphs of Functions [F-IF.4]
3. Circle all of the ordered pairs that are solutions to the equation represented by the graph.
A) $(3,0)$
B) $(2,2)$
C) $(-6,6)$
D) $(6,0)$
E) $(1,4)$
F) $(3,6)$

4. The graph below shows distance from destination, modeled as a function of time.

Circle true or false for each statement below.
A) The total distance traveled was 8 miles.

True False
B) The total time traveled was 8 minutes.

True False
C) The destination was 6 miles away, initially.

True False

Part C: Sequences [F-BF.2]
5. Consider the arithmetic function. Complete the table of values and graph the function.

$$
f(n)=3+2(n-1) \text { for } n \geq 1
$$

n	$f(n)$
1	
3	
5	
7	
9	

Tracy Unified School District - Updated March 12, 2020 - Page 2

Alg 1 U3 SBAC Practice
Name \qquad Date \qquad Period \qquad
Part A: Graphing Systems [A-REI.12]

1. Graph the system of linear equations and approximate the solution.

$$
\left\{\begin{array}{l}
y=2 x-8 \\
4 x+2 y=12
\end{array}\right.
$$

2. Graph the system of linear inequalities.

$$
\left\{\begin{array}{l}
y>\frac{1}{4} x+2 \\
y \leq-3 x+6
\end{array}\right.
$$

Tracy Unified School District - Updated March 12, 2020 - Page 1
3. Solve the system of linear equations using substitution. Show your work.

$$
\left\{\begin{array}{l}
y=\frac{2}{3} x-6 \\
x+6 y=-6
\end{array}\right.
$$

4. Solve the system of linear equations using elimination. Show your work.

$$
\left\{\begin{array}{l}
6 x-5 y=-4 \\
2 x+5 y=12
\end{array}\right.
$$

5. Consider the system of linear equations. Determine values for a and b to satisfy the conditions.

$$
\left\{\begin{array}{l}
y=-2 x+5 \\
y=a x+b
\end{array}\right.
$$

The system of linear equations has no solutions:
The system of linear equations has one solution:

$$
\begin{array}{ll}
a= & b= \\
a= & b=
\end{array}
$$

The system of linear equations has infinitely many solutions:
a \qquad
\qquad
Part C: Modeling with Systems [A-CED.2]
6. A gym offers two types of towel service:

- Unlimited towels for $\$ 30$ per month, or
- A monthly fee of $\$ 5$ plus $\$ 1$ per towel

Write and solve an equation that can be used to find the number of towels (t) used per month for the two options to cost the same amount. Show your work.
\qquad Date \qquad Period \qquad Part A: Categorical Data [S-ID.5]

1. Krista conducted a survey on breakfast preference and gender.
A) Determine the percent of surveyed students that are female.

	Cereal	Other
Female	22	36
Male	13	24

B) Given a student is female, determine the probability they prefer cereal.
C) Determine if there is an association between gender and breakfast preference. Justify your response.

Part B: Data Distributions [S-ID.2]
2. Sketch a line plot to represent the following set of data:

Age of Candidates: 27, 28, 29, 30, 31, 33, 33, 33, 34, 35
3. Select all the histogram that represents the following set of data:

$$
550^{\circ} \mathrm{F} \quad 802^{\circ} \mathrm{F} \quad 904^{\circ} \mathrm{F} \quad 965^{\circ} \mathrm{F} \quad 950^{\circ} \mathrm{F} \quad 1420^{\circ} \mathrm{F} \quad 210^{\circ} \mathrm{F} \quad 520^{\circ} \mathrm{F}
$$

A)

C)

B)

D)

Tracy Unified School District - Updated February 24, 2020 - Page 1
4. An arcade has prizes that range in cost from 1 ticket to 100 ticket. A new prize is added that costs 150 tickets. Select whether the value of each statistic for the cost of prizes increases, decreases, or cannot be determined.
A) Mean
Increases
Decreases
Cannot be Determined
B) Median
Increases
Decreases
Cannot be Determined
C) Standard Deviation
Increases
Decreases
Cannot be Determined

Part C: Scatter Plots [S-ID.6]
5. As part of a study for his Economics course, Michael surveyed ten random adults and plotted their age versus income in Excel.

A) Approximate the line of best fit on the graph and with a function.
B) Describe the distribution of the data.
C) Predict, using the line of best fit, the yearly income of an individual with age 50 .
6. The data below show the height, in inches, and the weight, in pounds, of ten male students in Mr.

Alexander's PE class.

Height (inches)	50	54	56	57	59	60	61	61	62	64
Weight (pounds)	135	152	147	148	165	175	172	189	187	192

According to the linear model that best fits the data, determine the predicted weight of a person with a height of 62 inches.

Alg 1 U5 SBAC Practice
Name \qquad Date \qquad Period \qquad
Part A: Working with Exponents and Radicals [N-RN.A.1]

1. Complete the table below using the completed rows as a reference.

Expression A			Expression B			Observations
Exponent Form	Expanded Form	Value	Exponent Form	Expanded Form	Value	
3^{4}		$3^{2} 3^{2}$				
3^{3}	$3 \bullet 3 \bullet 3$	27	$3^{2} 3^{1}$	$(3 \bullet 3)(3)$	27	I noticed that the expressions are equivalent by the product rule and have the same value.
3^{2}			$3^{2} 3^{0}$			
3^{1}			$3^{2} 3^{-1}$			
3^{0}			$3^{2} 3^{-2}$			
3^{-1}			$3^{2} 3^{-3}$			
3^{-2}	$\frac{1}{3 \bullet 3}$	$\frac{1}{9}$	$3^{2} 3^{-4}$	$(3 \bullet 3)\left(\frac{1}{3 \bullet 3 \bullet 3 \bullet 3}\right)$	$\frac{1}{9}$	I noticed that 2 minus 4 is -2 which is the power of the first expression.
3^{-3}			$3^{2} 3^{-5}$			

2. Write an equivalent expression.
A) $7^{\frac{2}{3}}$
B) $\sqrt{20}$
C) $\sqrt[3]{2^{4}}$
3. Rewrite each expression in the form $a^{m} b^{n}$.
A) $\left(a^{3} b^{5} b^{2}\right)^{2}$
B) $\left(a^{3} a^{-5} b^{7}\right)^{4}$
C) $\frac{\left(a b^{2}\right)^{2}}{a^{3} b}$
4. Determine if each statement is true for all values of x. If not, provide a counter example.
A) $4^{x}=2^{2 x}$
B) $8^{2 x}=16^{x}$
C) $2^{3 x}=3^{2 x}$

Part B: Working with Polynomials [A-APR.A.1]
5. Rewrite each expression, using as few terms as possible.
A) $\left(5 x^{2}+4 x+2\right)-(2 x+3)$
B) $\left(3 x^{2}+4 x-2\right)+\left(2 x^{2}-5 x+13\right)$
C) $\left(x^{2}+3 x\right)-\left(2 x^{2}-5 x+1\right)$
D) $\left(x^{2}+2 x+1\right)-2(3 x-1)$
6. Multiply to write an equivalent expression using two methods.

A) $-2 x(3 x-1)$

Method 1	Method 2

B) $(a-12)^{2}$

Method 1	Method 2

C) $(3 x-2)(4 x+1)$

Method 1	Method 2

