From the Teacher: K. Evans
Class: Algebra 1
Periods: 2 and 4
Assignment: Week 4

```
If turning in paper packet and work, make sure to
    include this header information on all pages!
From the Student:
Student Name
Teacher Name
Name of class
Períod #
Assignment #
```


Distance Learning 2020 Week 4

Solving Quadratic Equations

Assignments are accessible in Microsoft Teams on Office 365. Work can also be submitted in Teams, which I highly encourage you to do if you are able to. You can contact Ms. Evans if you need help with Teams. You must write your name in pen on each page of your assignment.

The work in this packet is officially due $5 / 15 / 2020$. I have broken down the work into daily chunks to help you manage your time. I encourage you to turn in assignments as you finish them.

My office hours are $1 \mathrm{pm}-3 \mathrm{pm}, \mathrm{M}-\mathrm{F}$. You can reach me through Remind (class code: @evans-alg1), email (kevans@tusd.net) or chat on Teams. Please continue to check your email regularly.

Ms. Evans will be holding a half hour meeting on Microsoft Teams to talk about the notes for the week and answer questions Monday and Wednesday. Check in Teams in the posts or the calendar to find the meeting time.

Week 4: Day 1 (turn in by 5/15/2020): Solve using square roots.
Read over notes on Solving Equations by Taking Square Roots (starts on page 4). Can also read the book, Explore \& Explain 1 in 22.1 on p.1033-1035.
Assignment \#1 is p. 1039 \#1-9, 23 (Skip graphing calculator part of instructions, and leave answers in simplified radical form not decimals when necessary)

Other resources that can help are
On Khan Academy
On Algeomulus Prep Academy (West High student made!)
https://youtu.be/RMwoe8sRYvg
https://youtu.be/2n9aMTiCfEc
https://youtu.be/qzK1DJ90Wsg
*If turning in work on Teams (which I highly encourage you to do if you are able to), you can do your assignment on binder paper and then upload a picture of it. Please write your name in pen on each page before you take a picture. Make sure your picture is clear and your work is readable.

Week 4: Day 2 (turn in by 5/15/2020): More Solving using square roots
Read over notes on Solving using Square Roots - Part 2 (starts on page 7). Can also read the book, Explain 2 in 22.1 on p.1036.
Assignment \#2 is p. 1040 \#10-15, 22 (Leave answers in simplified radical form not decimals when necessary)

Other resources that can help are
On Khan Academy
https://youtu.be/2n9aMTiCfEc?t=87
https://youtu.be/RMwoe8sRYvg?t=121

Week 4: Day 3 (turn in by 5/15/2020): Quadratic Formula
Read over notes on Using the Quadratic Formula to Solve Equations (starts on page 9). Can also read the book, Explain 2 in 22.3 on p.1061-1062
Assignment \#3 is p. 1068 \#9-14
Other resources that can help are
On Khan Academy (Two videos can be found on this link)
On Algeomulus Prep Academy (West High student made!)
https://youtu.be/3ayhvAI3IeY
https://youtu.be/s80J2dAUUyI

Week 4: Day 4 (turn in by 5/15/2020): More Quadratic Formula
Assignment \#4 is Quadratic Formula Practice worksheet (on page 3)

Week 4: Day 5 (turn in by 5/15/2020): Choosing Method to solve with
Read over notes on Choosing a Method for Solving Quadratic Equations (starts on page 12).
Assignment \#5 is p. 1082 \#2-10, 12, 14, 15

Quadratic Formula Practice (Week 4 Assignment \#4)

Algebra 1
Solve each equation using the quadratic formula. Leave answers as simplified radicals if necessary.

1. $5 x^{2}+6 x-4=0$
2. $11 n^{2}-7 n+4=0$
3. $6 v^{2}-v-85=-8$
4. $11 x^{2}-4 x-29=-12$
5. $x^{2}-11 x=-12$
6. $6 v^{2}+4 v=130$
7. $2 x^{2}-6=5 x$
8. $3 x^{2}-16=11 x$

Solving Equations by Taking Square Roots
To solve using square roots we need to remember how to simplify a square root

The square root of a nonnegative number a is the real number b such that $b^{2}=a$

$$
\sqrt{16}=4 \text { or }-4 \text { since } 4^{2}=16 \text { and }(-4)^{2}=16
$$

\$ So, Every positive number has 2 square roots, 1 positive \& 1 negative
We simplified square roots before using a factor tree to help us out
Ex
$\sqrt{360}$ Since 360 is not a perfect square should simplify
Make a factor tree for 360 (brealing down to primes)
$\wedge_{60}^{360} \quad 2,3$ and 5 are all prime "s so stop there
(2) (3) 610
(2)(3) $\frac{2}{2} \frac{5}{\xi}$
looking for pairs! Pairs send a representative outside 5 singletons stay behind (under $\sqrt{ }$)

$$
2 \cdot 3 \sqrt{2 \cdot 5}
$$

 completely different so be careful how you write it!!
Properties of Radicals (Remember $\sqrt{ }$ is a radical symbol because can change from Product Property of Radicals

For $a \geq 0$ \& $b \geq 0, \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$ \& don't use much since use tree to simplify.
Quotient Property of Radicals \$ So to take the square root of a
For $a \geq 0 \& b>0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ fraction, square root top \& square root

$$
\text { Ex } \sqrt{4 / 9}=\sqrt{4} / \sqrt{9}=2 / 3
$$

\$ With fractions, we do NBT leave a V in the denominator!! If we have $\sqrt{\frac{4}{3}}=\frac{\sqrt{4}}{\sqrt{3}}=\frac{2}{\sqrt{3}}$. In math the is just not done!

So we have to Rationalize the Denominator
Week 4

Rationalize the Denominator - rewrite a fraction with a square root in the denominator with out one.
$\frac{2}{\sqrt{3}}$ We can multiply a numerator AnD denominator of a fraction by the same number and not change the value of the fraction We need some thing to make $\sqrt{3}$ a perfect square (like $\sqrt{9}$)!
so to make 3 into 9 need to multiply by 3 (itself!)
$\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{3 \cdot 3}} \Leftarrow$ Product Property of radicals applied $\left(\begin{array}{l}\sqrt{3} \cdot \sqrt{3}=\sqrt{3 \cdot 3}) \\ 2 \sqrt{3}\end{array}\right.$

$$
=\frac{2 \sqrt{3}}{\sqrt{9}} \quad \sqrt{9}=3!
$$

$=\begin{array}{r}\frac{2 \sqrt{3}}{3} * \text { You can not "cancel" the } 3 \text { since one } 3 \text { under } \sqrt{ } \text { and } \\ \text { one is not. }\end{array}$

A few more examples:

$$
\sqrt{8 / 7}=\frac{\sqrt{8}}{\sqrt{7}} \quad \text { Simplify } \sqrt{8} \stackrel{\sim}{2}_{\substack{8 \\ 22}}^{8} \quad 2 \sqrt{2} \quad \text { Cant simplify } \sqrt{7}
$$

$\frac{2 \sqrt{2}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$ \# cant leave $\sqrt{7}$ in denominator so rationalize it!
$\frac{2 \sqrt{2 \cdot 7}}{\sqrt{7 \cdot 7}=\sqrt{49}} \begin{aligned} & \text { applying the product property } \sqrt{a} \cdot \sqrt{b}=\sqrt{a b}\end{aligned}$ A 1 and
$\frac{2 \sqrt{14}}{7} \nrightarrow$ cant simplify anything since 14 is under $\sqrt{ }$ and 7 is not!
$\frac{6}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$ * cant leave $\sqrt{2}$ in denominator so rationalize!
$\frac{6 \sqrt{2}}{\sqrt{2.2}}=\frac{6 \sqrt{2}}{\sqrt{4}}=\frac{6 \sqrt{2}}{2} \nRightarrow$ Not done! We can simplify $\frac{6}{2}$ Since both are not

$$
\begin{array}{rl}
& \frac{3}{6 \sqrt{2}} \\
x_{1} & 2 \text { goes into both! } \\
= & 3 \sqrt{2}
\end{array}
$$

Now that we can simplify square roots when necessary and rationalize the denominator We are redy to solve equations using square roots!

* undoing the square requires having the item being squared by it self

$$
x^{2}=4 \text { not } 7 x^{2}=28!
$$

Ex Solve the equation. Give the answer in radical form when necessary; (meaning simplify $\sqrt{ }$ when necessary, no decimal l!) this is slightly
a $3 x^{2}-7=2$ different from book instructions.
$+7+7$

$$
\frac{3 x^{2}}{3}=\frac{9}{3}
$$

$\sqrt{x^{2}}=\sqrt{3}$ \$ to "undo" square, square root both sides

$$
x= \pm \sqrt{3}
$$

at the start we saw ever 5 has 2 answers (it, 1-)
so when take $\sqrt{ }$ of both sides we MUST put \pm (plus-minus)
± 3 is the short way to say
b. $\begin{aligned} 4 x^{2}-10 & =90 \\ +10 & +10 \\ \frac{4 x^{2}}{4} & =\frac{100}{4}\end{aligned}$ +3 and -3 !
$\sqrt{x^{2}}=\sqrt{25} * \sqrt{ }$ both sides to get x and not x^{2}
$x= \pm 5$ remember to add \pm !
c

$$
\begin{aligned}
& 2 x^{2}+6=60 \quad * \text { get } x^{2} \text { by itself } \\
&-6-6 \\
& \frac{2 x^{2}}{2}=\frac{54}{2} \\
& \sqrt{x^{2}}==\sqrt{27} \quad * \sqrt{ } \quad \text { both sides to get rid of }{ }^{2} \text { (square!) } \\
& x= \pm \sqrt{27} \quad * \text { remember } \pm \text {. Now simplify } \sqrt{27} \text { if can } \\
& x= \pm 3 \sqrt{3} \quad 27
\end{aligned}
$$

\underline{d}

$$
\begin{aligned}
& 5 x^{2}-9=2 \\
& +9+9 \\
& \frac{5 x^{2}}{5}=\frac{11}{5} \\
& \sqrt{x^{2}}=\sqrt{11 / 5} \longrightarrow \frac{\sqrt{11}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \quad \text { Need to rationalize denominate or! } \\
& \begin{array}{lll}
x= \pm \frac{\sqrt{55}}{5} & =\frac{\sqrt{55}}{\sqrt{25}}=\frac{\sqrt{55}}{5} & \sqrt{11} \cdot \sqrt{5}=\sqrt{11 \cdot 5}=\sqrt{55} \\
\sqrt{5} \cdot \sqrt{5}=\sqrt{5 \cdot 5}=\sqrt{25}
\end{array}
\end{aligned}
$$

Remember: Can Not take the square root of a negative number So if get $\sqrt{x^{2}}=\sqrt{-3}$

Cant do! So No Solution!

Solving using Square Roots -Part 2

Solving a quadratic equation may involve isolating the squared part of a quachatic equation on one side of the equation first.
\# As long as the only variable in the equation is in the squared term then the equation can be solved using square roots.

Can Solve using Square Root

$$
\begin{aligned}
& \rightarrow 3 x^{2}+7=24 \\
& \rightarrow 2(x+4)^{2}=15 \\
& \rightarrow-3(x-2)^{2}+11=-1
\end{aligned}>\begin{aligned}
& x \text { is only } \\
& \text { inside } \\
& \text { squared part } \\
& \text { so ok! }
\end{aligned}
$$

Cannot solve using square root

$$
\begin{aligned}
& \rightarrow 3 x^{2}+4 x+7=0 \\
& \rightarrow 2(x+4)^{2}-2 x=7
\end{aligned}
$$

* the x separate from x^{2} and ()2 keeps us from vang 5 to solve the equation

Ex Solve the equation. Give answers in simplified radical form when necessary.
(meaning simplify $\sqrt{ }$ when necessary, no decimals!) this is slightly different from book
a $\sqrt{(x-3)^{2}}=\sqrt{36}$ *(1) is already by itself f so "undo" square by taking square root of both sides.
$x-3= \pm 6 \quad \sqrt{(x-2)^{2}}=x-3$ since $(x-3)$ squared $=(x-3)^{2}$!
+3 ti Took square root of both sides so add \pm to the 6
$x=3 \pm 6 \quad$ now solve for x !
$3+6$ or $3-6$ this is really two answers and since 6 \& 3 are like terns we must combine

$$
x=9 \text { or }-3
$$

b $\frac{7(x+4)^{2}}{7}=\frac{35}{7} \quad \not$ isolate ()2 since have 7 times ()2, divide to move 7
$\sqrt{(x+4)})^{\sqrt{5}} * \sqrt{ }$ both sides to "undo" square
$x+4= \pm \sqrt{5}$
$-4-4$$*$ don't forget \pm since 5 both sides
$x=-4 \pm \sqrt{5} \quad$ since cunt combine $-4 \& \sqrt{5}$ leave as is
But there are two answers here

$$
-4+\sqrt{5} \text { and }-4-\sqrt{5}
$$

C

$$
\begin{gathered}
2(x-3)^{2}+4=-28 \quad \neq \text { isolate }()^{2} \\
-4 \quad-4 \\
\frac{2(x-3)^{2}}{2}=\frac{-32}{2} \\
\sqrt{(x-3)^{2}}=\sqrt{-16} \quad \nrightarrow \sqrt{T} \text { both sides }
\end{gathered}
$$

can not take the square root of a negative number
No Solution
d

$$
\begin{aligned}
4(x+10)^{2}-3 & =45 \\
+3 & +3 \\
\frac{4(x+10)^{2}}{4} & =\frac{48}{4} \\
\sqrt{(x+10)^{2}} & =\sqrt{12} \quad
\end{aligned} \quad \nless \text { isolate }()^{2}
$$

$$
\begin{aligned}
x+10 & = \pm 2 \sqrt{3} \\
-10 & -10
\end{aligned} \quad \text { Remember } \pm \text { and simplify } \sqrt{12}
$$

$$
x=-10 \pm 2 \sqrt{3} \$ \text { get } x \text { by itself }
$$

can not Combine 1042 since 2 is not by itself it is
e,

$$
\begin{gathered}
\frac{-2(x-9)^{2}}{-2}=\frac{-128}{-2} \\
\sqrt{(x-9)^{2}}=\sqrt{64} \\
x-9= \pm 8 \\
+9+9 \\
x=9 \pm 8 \\
\boxed{\downarrow} \quad 9-8 \\
x=17 \text { or } 1
\end{gathered}
$$

Using the Quadratic Formula to Solve Equations
So far we have learned several ways to solve a quadratic equation
Graphing
Factoring
But all 3 have their limitations
Using Square Roots
One method that has no limitations is using the quadratic formula
To solve $a x^{2}+b x+c=0$, you can use the
Quadratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
A few things about using the quadratic formula
\rightarrow equation must $=0$ to get values of a, b, and c
So if equation is not in standard form $\left(a x^{2}+b x+c=0\right)$ then must rewrite, it
\rightarrow get rid of any ()
\rightarrow move terms to one side (preferable for x^{2} term to be positive)
\rightarrow remember it is possible for b and/or c to be 0

$$
\begin{array}{ll}
3 x^{2}-4=0 & \Rightarrow a=3 \quad b=0 \quad c=-4 \quad b=0 \text { since no } x \text { term } \\
x^{2}+5 x=0 \quad \Rightarrow a=1 \quad b=5 \quad c=0 \quad c=0 \text { since no constant term } \\
4 x^{2}=0 \quad \Rightarrow a=4 \quad b=0 \quad c=0 \quad \text { since no } x \text { term or constant term without } x \text {) }
\end{array}
$$

Just like with solving using square roots we will leave answers in simplified radical form.

Ex Solve using the quachatic formula.
a $2 x^{2}+3 x-1=0$
$a=2 \quad b=3 \quad c=-1$ already $=0$, so identify a, b, and c and plug into formula $a=2 \quad b=3 \quad c=-1$
$x=\frac{-3 \pm \sqrt{(3)^{2}-4(2)(-1)}}{2(2)}$

$$
=\frac{-3 \pm \sqrt{9+8}}{4}
$$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Simplify following order of operations
(every thing Under $\sqrt{ }$ first!)
b) $3 x^{2}+2 x-21=0$ \& already in standard form $(=0)$ so identify $a, b, \&$

$$
\begin{aligned}
a & =3 \quad b=2 \quad c=-21 \\
x & =\frac{-2 \pm \sqrt{(2)^{2}-4(3)(-21)}}{2(3)} \\
& =\frac{-2 \pm \sqrt{4+252}}{6} \\
& =\frac{-2 \pm \sqrt{256}}{6} \\
& =\frac{-2 \pm 16}{6} \\
x & =\frac{-2+16}{6} \text { or } x=\frac{-2-16}{6} \\
& =\frac{14}{6} \quad=-18 / 6 \\
x & =7 / 3 \text { or } x=-3
\end{aligned}
$$

C. $2 x=x^{2}-4$ not standard form, so need to rewrite into standard form ($=0$)
$0=x^{2}-2 x-4$
$a=1 \quad b=-2 \quad c=-4$$\nRightarrow$ identify a, b, and c and plug into quadratic formula

$$
\begin{aligned}
x & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-4)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4+16}}{2} \quad \text { simplify } \\
& =\frac{2 \pm \sqrt{20}}{2} \quad \text { simplify } \sqrt{20}
\end{aligned}
$$ (like did when solving using square roots)

* Simplify

Since $\sqrt{256}=16$ (a whole number) separate answers and simplify

$$
=\frac{(2 \pm \sqrt{5}}{(2)}
$$

d $\begin{aligned} 4 x^{2}+25= & -20 x \\ +20 x & +20 x\end{aligned} \quad$ rewrite into standard form
$4 x^{2}+20 x+25=0$
$a=4 \quad b=20 \quad c=25$$\quad \forall$ identify a, b, and c and plug into quadratic formula

$$
\begin{aligned}
x & =\frac{-20 \pm \sqrt{(20)^{2}-4(4)(25)}}{2(4)} \text { 为 simplify. } \\
& =\frac{-20 \pm \sqrt{400-400}}{8}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{-20 \pm \sqrt{0}}{8} * \text { since } \sqrt{O} & =0 \text { and }-20+0 ~ \\
& \text { is only ONE Solution }
\end{aligned}
$$

$$
=-20 / 8
$$

$$
x=-5 / 2
$$

e

$$
\begin{aligned}
& \begin{aligned}
& x^{2}-6 x-7=0 \\
& a=1 \quad b=-6 \quad c=-7
\end{aligned} \\
x & =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-7)}}{2(1)} \\
& =\frac{6 \pm \sqrt{36+28}}{2} \\
& =\frac{6 \pm \sqrt{64}}{2} \\
& =\frac{6 \pm 8}{2} \quad \not \quad \text { since } \sqrt{64}=8, \text { separate answers and simplify } \\
x & =\frac{6+8}{2} \text { or } x=\frac{6-8}{2} \\
& =\frac{14}{2} \quad=\frac{-2}{2} \\
x & =7 \text { or }-1
\end{aligned}
$$

ff $\begin{aligned} & 2 x^{2}=5 x-7 \\ &-5 x+7-5 x+7\end{aligned}$ Rewrite into Standard form!

$$
\begin{aligned}
& 2 x^{2}-5 x+7=0 \quad \text { Solve... } \\
& a=2 \quad b=-5 \quad c=7 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(7)}}{2(2)} \\
&=\frac{5 \pm \sqrt{25-56}}{4} \\
&=\frac{5 \pm \sqrt{-31}}{4} \quad \text { \& CanNoT take the square root!!! }
\end{aligned}
$$

No Solution

Choosing a Method for Solving Quadratic Equations
We have learned 4 ways to solve a Quadratic Equation:

1) Graphing
\Rightarrow most graph and if answers ane fractions or irrational (still have a 5)
it is hard to get accurate answers
2) Factoring
\Rightarrow must make $=0$ then factor, but not all polynomials can be factored
3) Using Square Roots
\Rightarrow Can only have x^{2} or ()2 no x term!
4) Quadratic Formula
\Rightarrow Works every time, but not always most efficient!
Ex Solve the quadratic equation by any means
\Rightarrow You pick one of 4 methods, can be different for different problems
a $7 x^{2}-3 x-5=0$
Can't use square roots (have $-3 x$ term)

* Can it factor?

$1 x-35 x$ only pairs that multiply
$7 x-5 x \quad$ to make $-35 x^{2}$ and to make $-35 x^{2}$ and none ald $y p$ to $-3 x$
So No!
$a=7 \quad b=-3 \quad c=-5$

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{(-3)^{2}-4(7)(-5)}}{2(7)} \\
& =\frac{3 \pm \sqrt{9+140}}{14} \\
x & =\frac{3 \pm \sqrt{149}}{14}
\end{aligned} \quad \text { 年 } 149 \text { is prime, so cant simplify }
$$

b) $x^{2}+7 x+6=0$ cant use square roots since has $7 x$ term

	1
x	x^{2}
6	$6 x$
$6 x$	6

* factor? $\int_{1 x}^{6 x^{2}} / 6 x$ $1 x$ bx sumbto $7 x$! Yes, so factor completely

$$
\begin{aligned}
& (x+1)(x+6)=0 \\
& x+1=0 \quad x+6=0 \\
& -1 \quad-6-6 \\
& x=-1 \text { or } x=-6
\end{aligned}
$$

* apply zero product property and solve new equations
c. $9 x^{2}-100=0$
+100 +100 \$ No x term so can use square roots (get x^{2} by self \&

$$
\begin{aligned}
& \frac{9 x^{2}}{9}=\frac{100}{9} \\
& \sqrt{x^{2}}=\sqrt{\frac{100}{9}} \\
& x= \pm \text { donit forget } \pm \text { when } \sqrt{ } \quad \text { both sides! }
\end{aligned}
$$

d $2 x^{2}+8 x=-3 \quad A$ cant use 5 since has $8 x$ term
$2 x^{2}+8 x+3=0$ make $=0$ since needed for factoring on quachatic formula

* can it be factored? $\int_{8 x}^{6 x^{2} /} \begin{array}{lll}1 x & 6 x & \begin{array}{l}\text { None of pairs that } \\ 2 x\end{array} 3 x \\ \text { multiply to get } 6 x^{2} \\ \text { add vp to } 8 x\end{array}$
$a=2 b=8 \quad c=3$ (ant factor so on to Quadratic formula So Can NoT factor

$$
\begin{aligned}
x & =\frac{-8 \pm \sqrt{8^{2}-4(2)(3)}}{2(2)} \\
& =\frac{-8 \pm \sqrt{64-24}}{4} \\
& =\frac{-8 \pm \sqrt{40}}{4} \quad 40 \\
& =\frac{-8 \pm 2 \sqrt{10}}{4} \quad \text { (42)} 10=2 \sqrt{2 \cdot 5}=2 \sqrt{10}
\end{aligned}
$$

$-8,2,4 \Rightarrow 2$ goes into all 3 \#s sodicide all by 2
$x=\frac{-4 \pm \sqrt{10}}{2}$
e $x^{2}+4 x-7=0$ * No square root * Factor? $\sum_{4 x}^{7 x_{x}}-1 \times 7 x \Rightarrow 6 x$ No, cant factor!
$a=1 b=4 c=-7$ * So Quadratic formula
$x=\frac{-41 \sqrt{4^{2}-4(1)(-7)}}{2(1)}$
$=\frac{-41 \sqrt{16+128}}{2}$
$=\frac{-4 \pm \sqrt{44}}{2}$
$=\frac{(-4) \pm 2 \sqrt{11}}{(2)}$
$x=-2 \pm \sqrt{11}$

I $3(x-4)^{2}+2=26$ * Can Use Square roots since variable only happens inside ()2

$$
\begin{aligned}
& \frac{3(x-4)^{2}}{3}=\frac{24}{3} \\
& \sqrt{(x-4)^{2}}=\sqrt{8} \\
& x-4= \pm 2 \sqrt{2} \\
& +4+4 \\
& x=4 \pm 2 \sqrt{2}
\end{aligned}
$$

* don't forget $\pm!11$

Rember every one of these problems could have been done using the quachatic formula, but it might have taken longer
in f, would have had to multiplied out into standard form (Week 1) then applied the quadratic fromula (definitely more complicated!)
if did c by quadratic formula would look like

$$
\begin{aligned}
& 9 x^{2}-100=0 \\
a & =9 \quad b=0 \quad c=-100 \\
x & =\frac{0 \pm \sqrt{0^{2}-4(9)(-100)}}{2(9)} \\
& =\frac{ \pm \sqrt{3600}}{18} \\
& = \pm \frac{60}{18} \div 6 \\
x & = \pm \frac{10}{3}
\end{aligned}
$$

Could have factored c as well! it is a difference of 2 squares!

$$
\begin{aligned}
& 9 x^{2}-100=0 \\
& (3 x)^{2}-(10)^{2}=0 \\
& (3 x+10)(3 x-10)=0 \\
& 3 x+10=0 \quad 3 x-10=0 \\
& -10-10 \quad+10+10 \\
& \frac{3 x}{3}=-\frac{10}{3} \quad \frac{3 x}{3}=\frac{10}{3} \\
& x=-10 / 3 \text { or } 10 / 3
\end{aligned}
$$

