From the Teacher: Mr. Haut
Class: Algebra 2
Periods: 3 and 4
Assignment: Week 1

```
If turning in paper packet and work, make sure to
    include this header information on all pages!
From the Student:
Student Name
Teacher Name
Name of class
Period #
Assignment #
```


Distance Learning 2020 Week 1 (April 20 ${ }^{\text {th }}$-April 24 ${ }^{\text {th }}$)

Assignments are accessible in Microsoft Teams on Office 365. Work can also be submitted in Teams, which I highly encourage you to do if you are able to. You can contact Mr. Haut if you need help with Teams. You must write your name in pen on each page of your assignment.
The work in this packet is not officially due until $5 / 8 / 2020$. However, I have broken down the work into daily chunks to help you manage your time. I encourage you to have the work from week 1 complete by $4 / 24 / 2020$. New assignments for weeks 2 and 3 will be given on that date.

My office hours are $1 \mathrm{pm}-3 \mathrm{pm}, \mathrm{M}-\mathrm{F}$. You can reach me through Remind (@haut-alg2), email (dhaut@tusd.net) or chat on Teams. Please continue to check your e-mail regularly.
*If turning in work on Teams (which I highly encourage you to do if you are able to), you can do your assignment on binder paper and then upload a picture of it. Please write your name in pen on each page before you take a picture. Make sure your picture is clear and your work is readable.

Week 1: Day 1 (turn in by May 8, 2020):

Range and End Behavior (This is review.)
Resources that can help:

- Textbook pg. 5-10
- The HMH Reteach 1.1 (attached)
- HMH Online Interactive Student Edition Lesson 1.1 (my.hrw.com)

Assignment \#1 : Wrksht HMH 1.1 Practice A/B Put all work on a separate piece of paper.

Week 1: Day 2 (turn in by May 8, 2020):

Characteristics of Function Graphs (This is review.)
Resources that can help:

- Textbook pg. 17-21
- The HMH Reteach 1.2 (attached)
- HMH Online Interactive Student Edition Lesson 1.2 (my.hrw.com)

Assignment \#2: Wrksht HMH 1.2 Practice A/B Put all work on a separate piece of paper.

Week 1: Day 3 (turn in by May 8, 2020):

Range and End Behavior (This is review.)
Resources that can help:

- Textbook pg. 47-51
- The HMH Reteach 1.4 (attached)
- HMH Online Interactive Student Edition Lesson 1.4 (my.hrw.com)

Assignment \#3 : Wrksht HMH 1.4 Practice A/B Put all work on a separate piece of paper.

Week 1: Day 4 (turn in by May 8, 2020):

Solving Quadratics by taking Square Roots (This is review.)
Resources that can help:

- Textbook pg. 113-119
- The HMH Reteach 3.1 (attached)
- HMH Online Interactive Student Edition Lesson 3.1 (my.hrw.com)

Assignment \#4 : Wrksht HMH 3.1 Practice A/B Put all work on a separate piece of paper.

Week 1: Day 5 (turn in by May 8, 2020):

Complex Solutions of Quadratic Equations (This is review.)
Resources that can help:

- Textbook pg. 139-144
- The HMH Reteach 3.3 (attached)
- HMH Online Interactive Student Edition Lesson 3.3 (my.hrw.com)

Assignment \#5 : Wrksht HMH 3.3 Practice A/B Put all work on a separate piece of paper.

LESSON

 1-1
Domain, Range, and End Behavior

Reteach

To represent part of a number line using interval notation use a square bracket if the endpoint is included, use a parenthesis if the endpoint is not included. Use $-\infty$ or $+\infty$ if the interval continues to the left or right.

Example

The interval continues to the right.

To find end behavior for a function, trace the graph to its left ($x \rightarrow-\infty$) and right $(x \rightarrow+\infty)$ ends. If it continues up, $f(x)$ goes to $+\infty$. If it continues down, $f(x)$ goes to $-\infty$.

Example

Left end continues up
As $x \rightarrow-\infty, f(x) \rightarrow+\infty$

Right end continues down As $x \rightarrow+\infty, f(x) \rightarrow-\infty$
\qquad Date \qquad
\qquad

$\frac{\text { Lesson }}{1-1}$ Domain, Range, and End Behavior
 1-1

Practice and Problem Solving: A/B

Describe the interval shown using an inequality, set notation, and interval notation.
1.

Inequality: \qquad
Set Notation: \qquad Interval Notation: \qquad
2.

Inequality: \qquad
Set Notation: \qquad
Interval Notation: \qquad

Describe the domain and range of the graph using an inequality, set notation, and interval notation. Then describe its end behavior.
3. Graph of $f(x)=-x^{2}+3$:

Domain:
Inequality: \qquad
Set Notation: \qquad
Interval Notation: \qquad
Range:
Inequality: \qquad
Set Notation: \qquad
Interval Notation: \qquad
End Behavior:

Draw the graph of the function with its given domain. Then determine the range using interval notation.
4. $g(x)=-3 x+2$ with domain $(-1,2]$:

Range:
5. $h(x)=0.5 x-1$ with domain $(-\infty, 4)$:

Range: \qquad

Characteristics of Function Graphs

Reteach

Example

Attribute of Function
Positive

Negative

Zero(s)
Increasing

Decreasing

Graph Characteristic
Above x-axis

Below x-axis

Crosses x-axis
Uphill (from left-right)

Downhill (from left-right)

$$
f(x)=6 \text { at } x=0
$$

Top of "peak" $\quad f(x)=6$ at $x=0$
Bottom of "valley"

None

Interval
$(-6,6)$

$$
(-\infty,-6) \cup(6,+\infty)
$$

$$
x=-6, x=6
$$

$(0,+\infty)$

Local Maximum
Local Minimum
\qquad
\qquad
\qquad

LESSON
 1-2

Characteristics of Function Graphs

Practice and Problem Solving: A/B

Use the graph to answer Problems 1-4.

1. On which intervals is the function increasing and decreasing?
\qquad

2. What are the local maximum and minimum values?
\qquad
\qquad
3. What are the zeros of the function?
\qquad
4. What is the domain and range?
\qquad
\qquad
Shelley is studying the relationship between her car's mileage (miles per gallon) and speed (miles per hour). The table shows the data Shelley found. Use the table for Problems 5-7.

Speed (miles per hour)	30	40	50	60	70
Mileage (miles per gallon)	34.0	33.5	31.5	29.0	27.5

5. Make a scatter plot of the data. Then use a calculator to find an equation for the line of best fit. Sketch the line.

Equation of line: \qquad

6. Use the equation found in Problem 5 to predict the miles per gallon of Shelly's car for a speed of 55 miles per hour.
\qquad
7. Is the prediction found in Problem 6 an example of interpolation or extrapolation? Explain.
\qquad
\qquad
\qquad

Inverses of Functions

Reteach

To find the inverse of a function:

1. Substitute y for $f(x)$.
2. Solve for x in terms of y.
3. Switch x and y.
4. Replace y with $f^{-1}(x)$.

Example: $f(x)=6 x-1$
$y=6 x-1$
$y+1=6 x$
$\frac{y+1}{6}=x$
$y=\frac{x+1}{6}$
$f^{-1}(x)=\frac{x+1}{6}$

The inverse of a function switches the x s and $y s$, causing each point on the graph to reflect across the diagonal line $y=x$.

Example

Function			Inverse Function	
x	y		x	
-2	1		y	
0	5	5	0	
1	7	7	1	

\qquad
\qquad
\qquad

LESSON
 1-4

Inverses of Functions

Practice and Problem Solving: A/B

Find the inverse of each function.

1. $f(x)=10-4 x$ \qquad
2. $g(x)=15 x-10$ \qquad
3. $h(x)=\frac{x-12}{4}$ \qquad
4. $j(x)=\frac{3 x+1}{6}$ \qquad

Find the inverse of each function. Then graph the function and its inverse.
5. $f(x)=5 x+10$
6. $f(x)=\frac{9}{2} x-5$
$f^{-1}(x)=$ \qquad

\qquad

Use composition to determine whether each pair of functions are inverses.
7. $g(x)=-5-\frac{7}{2} x$ and $f(x)=-\frac{2}{7} x-\frac{10}{7}$
8. $s(x)=7-2 x$ and $t(x)=\frac{1}{2} x+\frac{7}{2}$
9. $h(x)=\frac{1}{3} x+4$ and $j(x)=3 x-12$

LESSON 3-1

Solving Quadratic Equations by Taking Square Roots

Reteach

Imaginary numbers are the square roots of negative numbers. You can use the following information to simplify the square root of a negative number.

Product Property of
Square Roots
$\sqrt{a b}=\sqrt{a} \sqrt{b}$ ($a \geq 0, b \geq 0$)

Quotient Property of
Square Roots
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
($a \geq 0, b>0$)

Definition of i
$i=\sqrt{-1}$
Square Root of a Negative Number Property $\sqrt{-r}=i \sqrt{r} \quad(r>0)$

Example Simplify $\sqrt{-32}$.

Rewrite using the Square
Root of a Negative Number Property and the Product
Rule of Square Roots; then simplify.

Example Simplify $\sqrt{-\frac{3}{4}}$.
Rewrite using the Square Root of a Negative Number Property and the
Quotient Rule of $\quad i \cdot \frac{\sqrt{3}}{\sqrt{4}}$ Square Roots; then simplify. $i \cdot \frac{\sqrt{3}}{2}$, or $\frac{i}{2} \sqrt{3}$

To solve simple quadratic equations of the form $x^{2}=a$, use the method of taking square roots.

Example Solve $x^{2}-28=0$.
Add 28 to both sides. $\quad x^{2}=28$
Take the square root. $\quad x= \pm \sqrt{28}$
Simplify the square root.

$$
\begin{aligned}
& x= \pm \sqrt{28} \\
& x= \pm \sqrt{4} \cdot \sqrt{7} \\
& x= \pm 2 \sqrt{7}
\end{aligned}
$$

Example Solve $x^{2}+45=0$.
Subtract 45 from $\quad x^{2}=-45$
both sides. $\quad x= \pm \sqrt{-45}$
Take the square $\quad x= \pm i \sqrt{9} \cdot \sqrt{5}$ root.
Simplify the
square root.
\qquad
\qquad
\qquad

Solving Quadratic Equations by Taking Square Roots Practice and Problem Solving: A/B

For Problems $1-3$, solve the equation $-2 x^{2}+7=-1$ using the indicated method. Show your work.

1. Solve by graphing.
2. Solve by factoring.
3. Solve by taking square roots.

Find the square of each imaginary number.
4. $4 i$
5. $i \sqrt{11}$
6. $\frac{i \sqrt{7}}{3}$

Determine whether each equation has real or imaginary solutions by solving.
7. $7 x^{2}-12=0$
8. $x^{2}+9=3$
9. $2\left(x^{2}-1\right)=\left(x^{2}-3\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Recall the equation for falling objects: $h(t)=h_{0}-16 t^{2}$, where h is the height of the object, in feet, at any time t, in seconds, and h_{0} is the object's initial height in feet. Use this equation for Problems 10-11.
10. A carpenter dropped a hammer from a rooftop 48 feet above ground. How long did it take the hammer to hit the ground?
11. An acorn fell from a branch 20 feet high and landed on a branch 7 feet high. How long did it take the acorn to fall?

Reteach

One way to solve quadratic equations of the form $a x^{2}+b x+c=0$ is to use the

Quadratic Formula
 $$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example Solve.

$$
2 x^{2}+5 x+5=-1
$$

Step 1 Write in the form $a x^{2}+b x+c=0 . \quad 2 x^{2}+5 x+6=0$
Step 2 Write the Quadratic Formula. $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Step 3 Substitute values.

Step 4 Simplify.

$$
\begin{aligned}
& =\frac{-5 \pm \sqrt{5^{2}-4(2)(6)}}{2(2)} \\
& =\frac{-5 \pm \sqrt{25-48}}{2(2)} \\
& =\frac{-5 \pm \sqrt{-23}}{4} \\
& =\frac{-5 \pm i \sqrt{23}}{4}
\end{aligned}
$$

So, the two solutions are $\frac{-5+i \sqrt{23}}{4}$ and $\frac{-5-i \sqrt{23}}{4}$.
\qquad

${ }_{3-3}^{\text {Lesson }}$ Finding Complex Solutions of Quadratic Equations

Practice and Problem Solving: A/B

Solve using the quadratic formula.

1. $x^{2}+10 x=-9$
2. $x^{2}+2 x=-4$
3. $x^{2}+5 x=3$
4. $2 x^{2}+7 x+10=0$

Find the discriminant of each equation. Then determine the number of real or nonreal solutions.
5. $x^{2}-3 x=-8$
6. $x^{2}+4 x=-3$
7. $2 x^{2}-12 x=-18$

Complete the square for each expression. Write the resulting expression as a binomial squared.
8. $x^{2}-4 x+\square$
9. $x^{2}+12 x+\square$
10. $25 x^{2}-10 x+\square$

Solve each equation by completing the square.

$$
\text { 11. } x^{2}+2 x=3
$$

13. $-3 x^{2}+18 x=-30$
\qquad
14. The height in meters of a baseball t seconds after it is hit straight up in the air with a velocity of $45 \mathrm{~m} / \mathrm{s}$ is given by $h=-9.8 t^{2}+45 t+1.2$. Will a baseball hit straight up with this velocity hit the roof of a batting cage with a maximum height of 64.5 m ? Use the discriminant to explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
