Algebra 2 Guideline for Week 4 May, 11 – May, 15

There are 4 Review assignments to complete this week. You can either write on binder paper or print worksheets. Make sure to

- write very neat
- show all the work
- write your name in pen

After you are done with each assignment, open it on schoology.com, take a photo and submit. **Due date for these assignments is May 15**th, but I strongly recommend completing and submitting your assignments daily.

Please, message me on schoology if you have questions and need help. Also, there are will be live Q&A meetings with me through Zoom scheduled on schoology if you need an additional help.

May,11

Assignment HMH 9.3 Practice A/B "Solving Rational Equations" Complete assignment and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 9.3
- HMH 9.3 Reteach page (attached)

May,12

Assignment HMH 10.2 Practice A/B "Graphing Square Root Functions" Complete assignment and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 10.2
- HMH 10.2 Reteach page (attached)

May,13

Assignment HMH 11.1 Practice A/B "Radical Expressions and Rational Exponents"

Complete assignment on paper, take a photo and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 11.1
- HMH 11.1 Reteach page (attached)

May,14

Assignment HMH 11.2 Practice A/B "Simplifying Radical Expressions"

Complete assignment on paper, take a photo and submit on schoology.

Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 11.2
- HMH 11.2 Reteach page (attached)

May,15

Today is due date for all the assignments from week 3 and 4.

Make sure to turn in your assignments.

Solving Rational Equations *Reteach*

Rational equations can be solved algebraically by multiplying through by the LCD. **Example** Solve the rational equation algebraically. $\frac{x}{x-2} + \frac{1}{x-4} = \frac{2}{x^2 - 6x + 8}$ Factor the Multiply by LCD (x-2)(x-4) $\frac{x}{x-2} + \frac{1}{x-4} = \frac{2}{(x-2)(x-4)}$ denominator (x-2)(x-4)(x-2)(x-4)Step 1 Multiply each term by the LCD. $\frac{x}{x-2}(x-2)(x-4) + \frac{1}{x-4}(x-2)(x-4) = \frac{2}{(x-2)(x-4)}(x-2)(x-4)$ Step 2 Cancel common factors. x(x-4) + (x-2) = 2 $x^{2} - 4x + x - 2 = 2$ $x^2 - 3x - 4 = 0$ (x-4)(x+1) = 0Step 3 Simplify and solve the remaining equation. x = 4 or x = -1Step 4 Check for extraneous solutions that are excluded x = 4 is an excluded value. values. x = -1 is the solution.

LESSON **Solving Rational Equations** 9-3 Practice and Problem Solving: A/B

Identify any excluded values. Rewrite the equation with 0 on one side. Then graph to find the solution.

Find the LCD for each pair.

3. $\frac{13}{4x}$ and $\frac{27}{3x^2}$

4.
$$\frac{11}{x^2 + 3x + 2}$$
 and $\frac{1}{x + 2}$

Solve each equation algebraically.

5. $\frac{1}{x} - \frac{x-2}{3x} = \frac{4}{3x}$

7.
$$\frac{x^2 - 7x + 10}{x} + \frac{1}{x} = x + 4$$

6.
$$\frac{5x-5}{x^2-4x} - \frac{5}{x^2-4x} = \frac{1}{x}$$

8.
$$\frac{4}{x^2-4} = \frac{1}{x-2}$$

Solve.

9. The time required to deliver and install a computer at a customer's location is $t = 4 + \frac{d}{r}$, where t is time in hours, d is the distance, in miles, from the warehouse to the customer's location, and r is the average speed of the delivery truck. If it takes 6.2 hours for the employee to deliver and install a computer for a customer located 100 miles from the warehouse, what is the average speed of the delivery truck?

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Graph each function, and identify its domain and range.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Radical Expressions and Rational Exponents

Date _____

Class

Practice and Problem Solving: A/B

Write each expression in radical form. Simplify numerical expressions when possible.

1.	64 ⁵	2. $(6x)^{\frac{3}{2}}$	3.	$(-8)^{\frac{4}{3}}$
4.	$(5r^3)^{\frac{1}{4}}$	5. $27^{\frac{2}{3}}$	6.	$(100a)^{\frac{1}{2}}$
7.	10 ⁸ / ₅	8. $(x^2)^{\frac{2}{5}}$	9.	$(7x)^{-\frac{1}{3}}$
nun	te each expression by usin herical expressions when p $\left(\sqrt[4]{2}\right)^7$	g rational exponents. Simplify possible. 11. $(\sqrt{5x})^3$	12.	5√51⁴
13.	$\left(\sqrt{169}\right)^3$	14. $\left(\sqrt[4]{2\nu}\right)^3$	15.	$\left(\sqrt[5]{n^2}\right)^2$
16.	$\frac{1}{\left(\sqrt{3m}\right)^3}$	17. ⁷ √36 ¹⁴	18.	$\frac{1}{\left(\sqrt[4]{5p}\right)^{7}}$

Solve.

19. In every atom, electrons orbit the nucleus with a certain characteristic

velocity known as the Fermi-Thomas velocity, equal to $\frac{Z^{\frac{2}{3}}}{137}c$, where Z is the number of protons in the nucleus and c is the speed of light. In terms of c, what is the characteristic Fermi-Thomas velocity of the electrons in Uranium, for which Z = 92?

Simplifying Radical Expressions LESSON 11-2 Practice and Problem Solving: A/B Simplify each expression. Assume all variables are positive. 2. $4^{\frac{3}{2}} \cdot 4^{\frac{5}{2}}$ 1. $-3\sqrt{12r}$ 4. $\frac{(a^2)^2}{a^{\frac{3}{2}}b^{\frac{1}{2}} \cdot b}$ 3. $\frac{27^{\frac{4}{3}}}{2}$ 6. $\left(\frac{1}{243}\right)^{\frac{1}{5}}$ 5. $(27 \cdot 64)^{\frac{2}{3}}$ 7. $\frac{(25x)^{\frac{3}{2}}}{-\frac{1}{2}}$ 8. $(4x)^{-\frac{1}{2}} \cdot (9x)^{\frac{1}{2}}$ 9. $3\sqrt[3]{81x^4y^2}$ 10. $-5\sqrt[3]{-500x^5y^3}$

Solve.

- 11. The frequency, *f*, in Hz, at which a simple pendulum rocks back and forth is given by $f = \frac{1}{2\pi} \sqrt{\frac{g}{I}}$, where *g* is the strength of the gravitational field at the location of the pendulum, and *I* is the length of the pendulum.
 - a. Rewrite the formula so that it gives the length *I* of the pendulum in terms of *g* and *f*. Then simplify the formula using the fact that the gravitational field is approximately 32 ft/s^2 .
 - b. Use the equation found in part a to find the length of a pendulum, to the nearest foot, that has a frequency of 0.52 Hz.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.