Algebra 2 Guideline for Week 4 May,11 - May,15

There are 4 Review assignments to complete this week. You can either write on binder paper or print worksheets. Make sure to

- write very neat
- show all the work
- write your name in pen

After you are done with each assignment, open it on schoology.com, take a photo and submit. Due date for these assignments is May $\mathbf{1 5}^{\text {th }}$, but I strongly recommend completing and submitting your assignments daily.

Please, message me on schoology if you have questions and need help. Also, there are will be live Q\&A meetings with me through Zoom scheduled on schoology if you need an additional help.

May,11

Assignment HMH 9.3 Practice A/B "Solving Rational Equations"

Complete assignment and submit on schoology.
Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 9.3
- HMH 9.3 Reteach page (attached)

May,12
Assignment HMH 10.2 Practice A/B "Graphing Square Root Functions"
Complete assignment and submit on schoology.
Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 10.2
- HMH 10.2 Reteach page (attached)

May,13
Assignment HMH 11.1 Practice A/B "Radical Expressions and Rational
Exponents"
Complete assignment on paper, take a photo and submit on schoology.
Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 11.1
- HMH 11.1 Reteach page (attached)

May,14

Assignment HMH 11.2 Practice A/B "Simplifying Radical Expressions"

Complete assignment on paper, take a photo and submit on schoology.
Use the following resources to review:

- Notes from our class
- On-line HMH interactive lesson 11.2
- HMH 11.2 Reteach page (attached)

May,15
Today is due date for all the assignments from week 3 and 4.
Make sure to turn in your assignments.
\qquad
\qquad
\qquad

LESSoN Solving Rational Equations

Reteach

Rational equations can be solved algebraically by multiplying through by the LCD.
Example Solve the rational equation algebraically. $\frac{x}{x-2}+\frac{1}{x-4}=\frac{2}{x^{2}-6 x+8}$

Factor the denominator

$$
\frac{2}{(x-2)(x-4)}
$$

Step 1 Multiply each term by the LCD.

$$
\frac{x}{x-2}(x-2)(x-4)+\frac{1}{x-4}(x-2)(x-4)=\frac{2}{(x-2)(x-4)}(x-2)(x-4)
$$

Step 2 Cancel common factors.

$$
\begin{aligned}
\frac{x}{x-2}(x-2)(x-4)+\frac{1}{x-4}(x-2)(x-4) & =\frac{2}{(x-2)(x-4)}(x-2)(x-4) \\
x(x-4)+(x-2) & =2
\end{aligned}
$$

$$
\begin{array}{r}
x^{2}-4 x+x-2=2 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0
\end{array}
$$

$$
x=4 \text { or } x=-1
$$

Step 4 Check for extraneous solutions that are excluded values.

$$
\begin{gathered}
x=4 \text { is an excluded value. } \\
x=-1 \text { is the solution. }
\end{gathered}
$$

\qquad
\qquad
\qquad

Solving Rational Equations

Practice and Problem Solving: A/B

Identify any excluded values. Rewrite the equation with 0 on one side. Then graph to find the solution.

1. $-\frac{2}{x-3}=2$

\qquad

Find the LCD for each pair.

$$
\text { 3. } \frac{13}{4 x} \text { and } \frac{27}{3 x^{2}}
$$

4. $\frac{11}{x^{2}+3 x+2}$ and $\frac{1}{x+2}$
\qquad

Solve each equation algebraically.

5. $\frac{1}{x}-\frac{x-2}{3 x}=\frac{4}{3 x}$
6. $\frac{5 x-5}{x^{2}-4 x}-\frac{5}{x^{2}-4 x}=\frac{1}{x}$
7. $\frac{x^{2}-7 x+10}{x}+\frac{1}{x}=x+4$
8. $\frac{4}{x^{2}-4}=\frac{1}{x-2}$

Solve.
9. The time required to deliver and install a computer at a customer's location is $t=4+\frac{d}{r}$, where t is time in hours, d is the distance, in miles, from the warehouse to the customer's location, and r is the average speed of the delivery truck. If it takes 6.2 hours for the employee to deliver and install a computer for a customer located 100 miles from the warehouse, what is the average speed of the delivery truck?
\qquad Date \qquad Class \qquad

Lessom Graphing Square Root Functions
 10-2

Reteach

$$
f(x)=\sqrt{x} \quad g(x)=2.5 \sqrt{x+2}-1 \quad g(x)=\sqrt{-(x-1)}-2
$$

Vertical stretch by 2.5
Horizontal shift left 2 units
Vertical shift down 1 unit

Reflect across y-axis Horizontal shift right 1 unit Vertical shift down 2 units
\qquad Date \qquad
\qquad

LEsson Graphing Square Root Functions
 Practice and Problem Solving: A/B

Graph each function, and identify its domain and range.

1. $f(x)=\sqrt{x-4}$

Domain: \qquad
Range: \qquad
2. $f(x)=2 \sqrt{x}+1$

Domain: \qquad
Range: \qquad

Using the graph of $f(x)=\sqrt{x}$ as a guide, describe the transformation.
3. $g(x)=4 \sqrt{x+8}$ \qquad
4. $g(x)=-\sqrt{3 x}+2$

Use the description to write the square root function \mathbf{g}.

5. The parent function $f(x)=\sqrt{x}$ is reflected across the y-axis, vertically stretched by a factor of 7 , and translated 3 units down.
6. The parent function $f(x)=\sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the x-axis.

Solve.

7. The radius, r, of a cylinder can be found using the function $r=\sqrt{\frac{V}{\pi h}}$, where
V is the volume and h is the height of the cylinder.
a. Find the radius of a cylinder with a volume of 200 cubic inches and a height of 4 inches. Use $\pi=3.14$. Round to the nearest hundredth.
b. The volume of a cylinder is doubled without changing its height. How did its radius change? Explain your reasoning.
\qquad
\qquad

LEsson $111-1$ Radical Expressions and Rational Exponents

Reteach

$$
\text { Denominator } \rightarrow \text { Index }
$$

Translate the expressions with rational exponents into radical expressions, then simplify.
Example

$$
625^{\frac{3}{4}}=(\sqrt[4]{625})^{3}=5^{3}=125
$$

Example $\quad(-243)^{\frac{2}{5}}=(\sqrt[5]{-243})^{2}=(-3)^{2}=9$

Translate the radical expressions into expressions with rational exponents, then simplify.
Example $\sqrt[4]{4^{2}}=4^{\frac{2}{4}}=4^{\frac{1}{2}}=2 \quad$ Example $\quad \sqrt[3]{6^{9}}=6^{\frac{9}{3}}=6^{3}=216$
\qquad
\qquad
\qquad

LEsson Radical Expressions and Rational Exponents Practice and Problem Solving: A/B

Write each expression in radical form. Simplify numerical expressions when possible.

1. $64^{\frac{5}{6}}$
2. $(6 x)^{\frac{3}{2}}$
3. $(-8)^{\frac{4}{3}}$
4. $\left(5 r^{3}\right)^{\frac{1}{4}}$
5. $27^{\frac{2}{3}}$
6. $(100 a)^{\frac{1}{2}}$
7. $10^{\frac{8}{5}}$
8. $\left(x^{2}\right)^{\frac{2}{5}}$
9. $(7 x)^{-\frac{1}{3}}$

Write each expression by using rational exponents. Simplify numerical expressions when possible.
10. $(\sqrt[4]{2})^{7}$
11. $(\sqrt{5 x})^{3}$
12. $\sqrt[5]{51^{4}}$
\qquad
\qquad
13. $(\sqrt{169})^{3}$
14. $(\sqrt[4]{2 v})^{3}$
15. $\left(\sqrt[5]{n^{2}}\right)^{2}$
16. $\frac{1}{(\sqrt{3 m})^{3}}$
17. $\sqrt[7]{36^{14}}$
18. $\frac{1}{(\sqrt[4]{5 p})^{7}}$

Solve.

19. In every atom, electrons orbit the nucleus with a certain characteristic velocity known as the Fermi-Thomas velocity, equal to $\frac{Z^{\frac{2}{3}}}{137} c$, where Z is the number of protons in the nucleus and c is the speed of light. In terms of c, what is the characteristic Fermi-Thomas velocity of the electrons in Uranium, for which $Z=92$?
\qquad Date \qquad Class \qquad

LESSON Simplifying Radical Expressions
 11-2

Reteach

Rational exponents are subject to the same properties as integer exponents.

Product of	Quotient of	Power of a			
Powers	Powers	Power	Product	Power of a	Negative
Quotient	Exponent				
$a^{m} \square a^{n}=a^{m+n}$	$\frac{a^{m}}{a^{n}}=a^{m-n}$	$\left(a^{m}\right)^{n}=a^{m \sqsubset n}$	$(a b)^{m}=a^{m} b^{m}$	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	$a^{-m}=\frac{1}{a^{m}}$

Example Simplify the expressions. Assume all variables are positive.

$$
\left(4 x^{\frac{1}{3}}\right)^{\frac{3}{2}}
$$

$$
\left(\frac{5 y^{\frac{3}{4}}}{y^{\frac{1}{4}}}\right)^{2}
$$

$\left.\begin{array}{l}\text { Power of a } \\ \text { Product }\end{array} \quad\left(4 x^{\frac{1}{3}}\right)^{\frac{3}{2}}=4^{\frac{3}{2}}\left(x^{\frac{1}{3}}\right)^{\frac{3}{2}} \quad \begin{array}{l}\text { Quotient of } \\ \text { Powers }\end{array}\left(\frac{5 y^{\frac{3}{4}}}{y^{\frac{1}{4}}}\right)^{2}=\left(5 \square y^{\left(\frac{3}{4}-\frac{1}{4}\right.}\right)^{2}=\left(5 \square y^{\frac{2}{4}}\right)^{2}=\left(5 y^{\frac{1}{2}}\right)^{2}{ }^{2}{ }^{1} \frac{3}{2}\right)$
Power of a
Power
$=8\left(x^{\frac{1}{3} \frac{3}{2}}\right)$
Power of a
Product
$=5^{2}\left(y^{\frac{1}{2}}\right)^{2}$
Simplify. $\quad=8 x^{\frac{1}{2}}$
Simplify. $\quad=25 y^{\frac{1}{2}[2}=25 y$
\qquad Date \qquad
\qquad

Lesson Simplifying Radical Expressions
 Practice and Problem Solving: A/B

Simplify each expression. Assume all variables are positive.

1. $-3 \sqrt{12 r}$
2. $4^{\frac{3}{2}} \cdot 4^{\frac{5}{2}}$
3. $\frac{27^{\frac{4}{3}}}{27^{\frac{2}{3}}}$
4. $\frac{\left(a^{2}\right)^{2}}{a^{\frac{3}{2}} b^{\frac{1}{2}} \cdot b}$
5. $(27 \cdot 64)^{\frac{2}{3}}$
6. $\left(\frac{1}{243}\right)^{\frac{1}{5}}$
7. $\frac{(25 x)^{\frac{3}{2}}}{5 x^{\frac{1}{2}}}$
8. $(4 x)^{-\frac{1}{2}} \cdot(9 x)^{\frac{1}{2}}$
\qquad
9. $3 \sqrt[3]{81 x^{4} y^{2}}$
10. $-5 \sqrt[3]{-500 x^{5} y^{3}}$

Solve.

11. The frequency, f, in Hz , at which a simple pendulum rocks back and forth is given by $f=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}$, where g is the strength of the gravitational field at the location of the pendulum, and I is the length of the pendulum.
a. Rewrite the formula so that it gives the length / of the pendulum in terms of g and f. Then simplify the formula using the fact that the gravitational field is approximately $32 \mathrm{ft} / \mathrm{s}^{2}$.
b. Use the equation found in part a to find the length of a pendulum, to the nearest foot, that has a frequency of 0.52 Hz .
