Algebrra 1B week 3

Assignment 5/4
Directions: Solve each quadratic equation by factoring.

Notes:

- Using the skills we practiced last week, we are going to solve quadratic equations (find the values of x that make the equation equal zero.
- Steps:
- Factor each polynomial completely.
- Set each factor equal to zero.
- Solve each equation.

Example: $x^{2}+10 x+16=0$

$$
\begin{array}{ll}
(x+8)(x+2)=0 \\
x+8=0 & x+2=0 \\
x=-8 & x=-2
\end{array}
$$

Example: $4 x^{2}+12 x=0$

$$
\begin{array}{ll}
4 x(x+3)=0 \\
4 x=0 & x+3=0 \\
x=0 & x=-3
\end{array}
$$

1. $x^{2}+6 x+5=0$
2. $5 x^{2}+15 x=0$
3. $16 x^{2}-9=0$
4. $x^{2}-11 x+28=0$
5. $2 x^{2}+11 x+12=0$
6. $25 x^{2}-81=0$
7. $x^{2}+10 x-24=0$
8. $3 x^{2}+21 x+36=0$

Assignment 5/5
Directions: Simplify each radical
Notes: To simplify a radical

- Determine two factors (one of them has to be a perfect square)
- Simplify the perfect square

Example: $\sqrt{20}$

$$
\sqrt{4} \sqrt{5}
$$

$2 \sqrt{5}$

1. $\sqrt{24}$
2. $\sqrt{18}$
3. $\sqrt{8}$
4. $\sqrt{32}$
5. $\sqrt{20} 0$
6. $\sqrt{98}$
7. $\sqrt{28}$
8. $\sqrt{45}$
9. $\sqrt{12}$
10. $\sqrt{48}$

Assignment 5/6
Directions: Identify a, b, and c
Example: $a x^{2}+b x+c$

$$
\begin{aligned}
& 4 x^{2}+10 x-5 \\
& a=4 \quad b=10 \quad c=-5
\end{aligned}
$$

1. $2 x^{2}+10 x+3$
2. $4 x^{2}-8 x+11$
3. $9 x^{2}+x+5$

Directions: Solve each quadratic equation using the quadratic formula.

Notes:

- Quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Steps:
- Identify a, b, and c
- Substitute into the quadratic formula
- Simplify the radical (if possible)
- Simplify the fraction (if possible)

4. $x^{2}-4 x-2=0$
5. $2 x^{2}+5 x-4=0$
6. $-4 x^{2}-3 x+5=0$
7. $3 x^{2}-6 x-4=0$

Directions: Add/subtract each of the polynomials.

Notes:

- When adding polynomials, combine like terms. Write terms in descending order.
- When subtracting polynomials, distribute the negative to the polynomial to its right and then combine like terms. Write terms in descending order.

1) $\left(5 p^{2}-3\right)+\left(2 p^{2}-3 p^{3}\right)$
2) $\left(a^{3}-2 a^{2}\right)-\left(3 a^{2}-4 a^{3}\right)$
3) $\left(4+2 n^{3}\right)+\left(5 n^{3}+2\right)$
4) $\left(4 n-3 n^{3}\right)-\left(3 n^{3}+4 n\right)$
5) $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
6) $\left(4 r^{3}+3 r^{4}\right)-\left(r^{4}-5 r^{3}\right)$
7) $(5 a+4)-(5 a+3)$
8) $\left(3 x^{4}-3 x\right)-\left(3 x-3 x^{4}\right)$
9) $\left(-4 k^{4}+14+3 k^{2}\right)+\left(-3 k^{4}-14 k^{2}-8\right)$
10) $\left(3-6 n^{5}-8 n^{4}\right)-\left(-6 n^{4}-3 n-8 n^{5}\right)$

Directions: Multiply each of the polynomials

Notes:

- Use either the distributing method or the box method.
- Remember, add exponents when multiplying polynomials.
- Write terms in descending order.

1) $6 v(2 v+3)$
2) $7(-5 v-8)$
3) $2 x(-2 x-3)$
4) $-4(v+1)$
5) $(2 n+2)(6 n+1)$
6) $(4 n+1)(2 n+6)$
7) $(x-3)(6 x-2)$
8) $(8 p-2)(6 p+2)$
9) $(6 p+8)(5 p-8)$
10) $(3 m-1)(8 m+7)$
