Directions: Solve each quadratic equation by factoring.

Notes:

- Using the skills we practiced last week, we are going to solve quadratic equations (find the values of x that make the equation equal zero.
- Steps:
 - Factor each polynomial completely.
 - \circ Set each factor equal to zero.
 - Solve each equation.

Example: $x^2 + 10x + 16 = 0$

$$(x + 8)(x + 2) = 0$$

 $x + 8 = 0$ $x + 2 = 0$
 $x = -8$ $x = -2$

Example: $4x^2 + 12x = 0$

$$4x(x + 3) = 0$$

 $4x = 0$ $x + 3 = 0$
 $x = 0$ $x = -3$

- 1. $x^2 + 6x + 5 = 0$
- 2. $5x^2 + 15x = 0$
- 3. $16x^2 9 = 0$
- 4. $x^2 11x + 28 = 0$
- 5. $2x^2 + 11x + 12 = 0$
- 6. $25x^2 81 = 0$
- 7. $x^2 + 10x 24 = 0$
- 8. $3x^2 + 21x + 36 = 0$

Directions: Simplify each radical

Notes: To simplify a radical

- Determine two factors (one of them has to be a perfect square)
- Simplify the perfect square

Example: $\sqrt{20}$

 $\sqrt{4}\sqrt{5}$ $2\sqrt{5}$

- 1. $\sqrt{24}$
- 2. $\sqrt{18}$
- 3. $\sqrt{8}$
- 4. $\sqrt{32}$
- 5. $\sqrt{200}$
- √98
- 7. $\sqrt{28}$
- 8. √45
- 9. $\sqrt{12}$
- 10. $\sqrt{48}$

Directions: Identify *a*, *b*, and *c*

Example: $ax^{2} + bx + c$ $4x^{2} + 10x - 5$ a = 4 b = 10 c = -51. $2x^{2} + 10x + 3$ 2. $4x^{2} - 8x + 11$ 3. $9x^{2} + x + 5$

Directions: Solve each quadratic equation using the quadratic formula.

Notes:

- Quadratic formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Steps:
 - Identify a, b, and c
 - Substitute into the quadratic formula
 - Simplify the radical (if possible)
 - Simplify the fraction (if possible)

4.
$$x^2 - 4x - 2 = 0$$

- 5. $2x^2 + 5x 4 = 0$
- 6. $-4x^2 3x + 5 = 0$
- 7. $3x^2 6x 4 = 0$

Directions: Add/subtract each of the polynomials.

Notes:

- When adding polynomials, combine like terms. Write terms in descending order.
- When subtracting polynomials, distribute the negative to the polynomial to its right and then combine like terms. Write terms in descending order.

1)
$$(5p^2 - 3) + (2p^2 - 3p^3)$$

2) $(a^3 - 2a^2) - (3a^2 - 4a^3)$

3)
$$(4+2n^3) + (5n^3+2)$$

4) $(4n-3n^3) - (3n^3+4n)$

5)
$$(3a^2 + 1) - (4 + 2a^2)$$

6) $(4r^3 + 3r^4) - (r^4 - 5r^3)$

7)
$$(5a+4) - (5a+3)$$

8) $(3x^4 - 3x) - (3x - 3x^4)$

9)
$$(-4k^4 + 14 + 3k^2) + (-3k^4 - 14k^2 - 8)$$

10) $(3 - 6n^5 - 8n^4) - (-6n^4 - 3n - 8n^5)$

Directions: Multiply each of the polynomials

Notes:

- Use either the distributing method or the box method.
- Remember, add exponents when multiplying polynomials.
- Write terms in descending order.
- 1) 6v(2v+3) 2) 7(-5v-8)
- 3) 2x(-2x-3) 4) -4(v+1)
- 5) (2n+2)(6n+1) 6) (4n+1)(2n+6)

7) (x-3)(6x-2)8) (8p-2)(6p+2)

9) (6p+8)(5p-8) 10) (3m-1)(8m+7)