Teacher: Mr. Whetstone

Class: Algebra 2 Pre-AP

Periods: 4 and 5

Assignment: Week of 11 May

& 18 May

If turning in paper packet and work, make sure to include this header information on all pages!

From the Student: Student Name Teacher Name Name of class Períod #

OTL#

Distance Learning: Week of 11 May & 18 May 2020:

Assignments are accessible through YouTube videos. I will post the YouTube url's each day through the Remind app. You can also receive them by e-mail. Work can be submitted through Remind and e-mail, which I highly encourage. You can sign up for Remind by texting the message @whet-alg2 to the number 81010. You can also contact me through e-mail at swhetstone@tusd.net.

My office hours are 10 am - 12 pm, M-F. You can contact me with questions either through Remind or by e-mail. Please check your Remind messages regularly.

Topic: Unit Circle Trigonometry & Trig. Functions

Monday: 11 May 2020

Lesson 18.1 OTL#153 pg. 881-882, #1-6 (*Graph at least two cycles*)

Tuesday: 12 May 2020

Lesson 18.1 OTL#154 pg. 882-887, #7-15, 17, 24

Wednesday: 13 May 2020

Lesson 18.3 OTL#155

Graphing the General Sine & Cosine Functions worksheet (see below)

Thursday: 14 May 2020

Lesson 18.3 OTL#156 pg. 917-920, #5-6, 9-10, 12

Friday: 15 May 2020

Lesson 18.2 OTL#157

pg. 898-899, #2-5 (Graph at least three cycles. Do not graph the parent function.), AND #6-9

Monday: 18 May 2020

Lesson 18.3 OTL#158

Tangent Functions (Lesson 18.3 Day 3) worksheet (see below)

Tuesday: 19 May 2020

Unit 8 Review
OTL#159
Unit 8 Review worksheet (see below)

Wednesday: 20 May 2020

Lesson 18.5 OTL#160

Trig. Equations #1 worksheet (see below)

Thursday: 21 May 2020

Lesson 18.5 OTL#161

Trig. Equations #2 worksheet (see below)

Friday: 22 May 2020

Lesson 18.5 OTL#162

Trig. Equations #3 worksheet (see below)

Other resources that can help are...

Khan Academy videos on unit circle trigonometry & trig. functions. YouTube videos on unit circle trigonometry & trig. functions.

"Algeomulus Prep. Academy" videos (West High, student-made!!). https://youtu.be/M2Y1ISB1vaE

Graphing General Sine & Cosine Functions

Identify a, b, h, and k. Identify the period, amplitude, midline, and maximum and minimum values of the graph. Then graph at least two cycles of the function.

1.
$$g(x) = -3\sin(x+\pi)+1$$

2.
$$g(x) = 2\cos 3x + 1$$

3.
$$g(x) = 3\sin\frac{\pi}{2}(x-2) + 3$$

4.
$$g(x) = 4\cos\frac{1}{2}(x+3\pi)-3$$

Tangent Functions (Lesson 18.3 Day 3)

For each function, identify the period, the midline, and the two "main" asymptotes. Then graph at least 3 cycles of the function.

1.
$$g(x) = 3\tan\frac{1}{2}(x+3\pi)-2$$

2.
$$g(x) = \frac{1}{2} \tan 2(x - \pi) + 3$$

3.
$$g(x) = -3\tan\frac{1}{3}\left(x - \frac{3\pi}{2}\right) + 4$$

4.
$$g(x) = \frac{1}{2} \tan \frac{1}{3} (x + 2\pi) + 2$$

Write an equation for each graph. Use the indicated point as the "starting" point.

5.

6.

7.

8.

DO NOT WRITE ON THIS FORM!!

Unit 8 Review

SHOW ALL WORK ON SEPARATE PAPER!!

Some useful items
$$s = r\theta$$
 $x = r\cos\theta$ $y = r\sin\theta$ $\tan\theta = \frac{\sin\theta}{\cos\theta}$ $\sin^2\theta + \cos^2\theta = 1$

Convert the radian measure to degree measure. Then calculate the arc length, rounding to the nearest hundredth. Assume a circle with radius 11.2 feet.

1.
$$\frac{3\pi}{5}$$
 2. $\frac{20\pi}{9}$

An amusement park ride carries riders in a circle with a radius of 9.3 meters and makes 5 revolutions for each ride. A rider makes a full revolution once every 13 seconds.

- 3. How far does a rider travel during one revolution?
- 4. What size angle, in degrees, does a rider travel in about 7.1 seconds?
- 5. What is the angular velocity of a rider in meters/second?
- 6. How far does a rider travel when traveling an angle of 200°.

Convert the degree measure to radian measure. Then calculate the arc length, rounding to the nearest hundredth. Assume a circle with radius 6.7 meters.

Identify the reference angle. Then evaluate the trigonometric function. Be sure to show how you determined the answer.

9.
$$\sin\left(-\frac{19\pi}{6}\right)$$
 10. $\cos 870^{\circ}$ 11. $\tan\frac{11\pi}{6}$

12.
$$\sin 810^{\circ}$$
 13. $\cos \left(-\frac{11\pi}{4}\right)$ 14. $\tan \left(-945^{\circ}\right)$

Use the given value of $\sin \theta$ to find the approximate value of $\cos \theta$ in the quadrant indicated.

15.
$$\sin \theta = 0.985$$
 where $0 < \theta < \frac{\pi}{2}$ 16. $\sin \theta = -0.996$ where $\pi < \theta < \frac{3\pi}{2}$

Use the given value of $\cos\theta$ to find the approximate value of $\sin\theta$ in the quadrant indicated.

17.
$$\cos \theta = -0.259$$
 where $\frac{\pi}{2} < \theta < \pi$ 18. $\cos \theta = 0.174$ where $\frac{3\pi}{2} < \theta < 2\pi$

What can you conclude if the only information you are given is that $\tan \theta = -3.145$? Answer True or False for each statement.

19. The terminal side of the angle must be in Quadrant IV. 20. The value of
$$\sin \theta$$
 must be less than the value of $\cos \theta$.

21. The value of
$$\cos \theta$$
 must be positive. 22. If $\sin \theta$ is positive, then $\cos \theta$ must be negative.

- 23. Determine $\cos \theta$ given that $\tan \theta = -3.73$ and $\sin \theta = -0.259$.
- 24. Determine $\sin \theta$ given that $\tan \theta = -0.268$ and $\cos \theta = 0.259$.

Write the function rule for the transformed trig function shown. **Functions should only have** a **and** b **values.**

25.

26.

Graph each function. Identify all the key features of the function.

27.
$$g(x) = -2\sin\frac{1}{4}(x-3\pi)$$

28.
$$f(x) = 2\tan(x+\pi) - 3$$

29.
$$g(x) = 3\cos 2\left(x + \frac{\pi}{2}\right) + 1$$

Trig. Equations #1

DO NOT WRITE ON THIS FORM!!

Solve each equation in the interval $0 \le x < 2\pi$.

1.
$$2\cos x + 6 = 5$$

2.
$$6\sin x - 3\sqrt{2} = 0$$

3.
$$3\tan x + \sqrt{3} = 0$$

4.
$$5\cos x - \sqrt{3} = 3\cos x$$

5.
$$\tan x + 5 = 4$$

6.
$$4\sin^2 x - 3 = 0$$

7.
$$4\cos^2 x - 6 = -4$$

8.
$$\tan^2 x + 5 = 8$$

Trig. Equations #2

DO NOT WRITE ON THIS FORM!!

Solve each equation in the interval listed.

1.
$$2\cos x + 1 = 0$$

$$[0,\pi)$$

2.
$$2\sin x + \sqrt{2} = 0$$

$$0, \frac{3\pi}{2}$$

3.
$$\tan x + \sqrt{3} = 0$$

$$[-\pi,\pi)$$

4.
$$2\cos x + \sqrt{3} = 0$$
 [0, 3π)

$$[0, 3\pi]$$

5.
$$4\cos^2 x = 1$$

$$\left[-\pi,\pi
ight]$$

$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

7.
$$4\cos^2 x + 5 = 9$$
 $\left[-\pi, \pi\right)$

$$[-\pi,\pi]$$

8.
$$4\sin^2 x + 7 = 8$$
 $[\pi, 2\pi]$

$$\pi, 2\pi$$

Trig. Equations #3

DO NOT WRITE ON THIS FORM!!

Solve each equation in the interval listed.

1.
$$2\sin^2 x + \sin x = 0$$

$$(-\pi,\pi]$$

$$2. \quad \sin^2 x \cos x = 4\cos x$$

$$[-\pi,\pi]$$

$$3. \quad 2\sin x \cos x = \sqrt{2}\cos x$$

$$\left[-\frac{\pi}{2},\pi\right]$$

4.
$$2\sin^2 x - \sin x - 1 = 0$$
 $\left(0, \frac{3\pi}{2}\right]$

$$\left(0,\frac{3\pi}{2}\right]$$

5.
$$\tan^2 x + \tan x = 0$$

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right]$$

$$6. \quad \sqrt{2}\sin x \cos x + \sin x = 0$$

$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

7.
$$2\cos^2 x - 3\cos x + 1 = 0$$

$$\left[0,\frac{5\pi}{2}\right)$$

8.
$$\tan^3 x - \tan x = 0$$

$$[0,2\pi]$$